

"The fields of both distributed computing and object oriented programming area very
active at the moment. This is mostly due to the size and complexity of programs
getting larger, and with the rise in use of both networks and the Internet. So systems
that can handle both distributed and object based programs are becoming of great
interest at the moment. So this project report is on a project that had the aim of
designing and building the core of a operating system, that melded the areas of

distributed computing and object oriented programming together."

The project supervisor for the COBOS project was G.Nyerges.

The project was written using Borland's TASM and TLINK, assembler and linker,
and the Norton disk utilities was used in the testing of the system.

All code contained within the COBOS project was written by P.Antoine.

This report has been submitted for assessment
towards a Bachelor of Engineering degree in
the School of Electrical, Electronic and
Information Engineering,
South Bank University.

This report is written in the author's own words
and all sources have been properly cited.

Peter Antoine
22nd April 1997

Introduction into the area of Object Oriented programming,
DistributedarchitecturesTheareasurroundingthe projectandits
design.

Description of the project structure, the functional overview,
structural Description, Installer design, Loader design, and
Programming methods.

Whatwaslearnt from the project. How successfulvasthe project,
Problemsthat was had while implementingthe project. How the
system deviated from what was imagined.

: Technical Details
: Using COBOS
: API Function Descriptions
: Yordon Specification
: SDS-3 Design
: COPLE Definition

This reportis thefinal projectreportfor my BEng\BScfinal year project. The project
is part of my BEng (Hons) SoftwareEngineeringfor Real Time SystemySWERTYS)
degree.

The project aims, (as detailed in the "aims abgctives"sectionof thereport,wasto
designandbuild a protectedmodeoperatingsystemon a PC. Which hasthe capasitiy
to handle objectthataredesignedo beindependantrom specificapplicationsThese
objectswill be differentfrom the type of objectsthatarefound in the objectoriented
languages like C++, where the objects are a part of the application program itself.

The format of the project is quite straight forward and some aftthptershavebeen
split up into sub-chaptersThe main body of the reportis foundin two sectionsthe
"technical background"” and the "technical approach”. The first will give an
introductionto the projectarea,andwill describethe contextin which the COBOS
projectfits into. Thetechnicalapproactsection,will explainin detailthe designideas,
and how the sub sections work. There is a small discuasibe endof the sectionon
the methods that are used to control the complexity of the project.

In the appendiceshereare descriptionsof how in brief the COBOS systemusesthe
protectednode,how someof the sub-componentaork andareused,how theto use
the system,the list of Application Programmerinterface functions, and the full

specification and designs for the system.

Finally two 32" floppy disksareattachedo the backof the report. Thefirst of these
holdsa copy of all the sourcecodefor the system.The seconds aninstallableversion
of the system as it stands at the moment. | hope that you enjoy reading this report.

The singleaim of this projectis to designandbuild an operatingsystemto run on an
Intel (type) 80386 (or faster) basedPersonalComputer.The operatingsystemwiill
supportthe needsof persistentobjectsand will also control the underlying PC and
peripherals.

The project splits into four major parts:

A Concurrent Kernel

An Object Control Sub-System
A user interface

A DOS loader

The concurrent kernel is the part of the system that controls the whole operation of the
PC andits underlyingcomponentsand peripheralsThis is the part of the systemthat

will controls the context switching, the accessto the systempart, and basically
controls the running of the system.

The objectcontrol sub-systemwill do the work of loadingandclosingthe objects.It
will alsocontrolthe accessethatthe applicationprogramswill be allowedto maketo
the objectslnstancesof the objects are the responsibility of this sub-systadit will
handlethe creating,deletion,andupdatingof thesefor the application.Onething that
this systemis not responsibldor is the creationof the objectsthemselvesa separate
application(a compiler) would be usedto actually createthe objectsthemselvesA
more detailed description of the object control system will be given later.

The userinterfaceis a graphicalbasedsystem,and will be basedaroundthe idea of
virtual windows which are independenif the systemand leavesthe application
knowing nothing aboutthe system.This interfacewill use both the mouseand the
keyboardto input dataandcommandgo the system.The systemwill useiconsto aid
the communication between the user and the system/applications.

A finally, thelastof the objectivess to write a DOS loaderthatwill load andinitialise
the COBOS operating systenom the DOS commandine. As DOS s not concurrent
andalsorunsin Real Mode, the loaderwill alsohavethe responsibilityof switching
the PC in to Protected Mode which is the native mode of the 80386+ processors.
Also as part of this a small installation program is needed,that preparesan
environment that the rest of the COBOS system can use.

The following are the items that are to be delivered as part of this project.

(Already delivered)

Thisis be providedon a 3%" floppy disk,and is a fully
executable version of the project.

This program and batchfile, will createa file that the
COBOSdisk systemmeedsto useasits own virtual disk
drive. This file will make it possiblefor COBOSto
allocateits owndisk spacein blocksinsteadof clusters,
which will be needed by the system.

This is provided on a separate 32" floppy disk andéhas
full listing of all the code that makes up the project.

These will on the same flopdiskthat hasthe operating
system on it.

Details of how all the programsareto be usedcanbe found in the two appendices,
"B:Using COBOS" and"C: API FunctionDescriptions” Thesetwo appendiceput
together make up the user guide.

A discussionof what an objectis and why objectsare used.An
introduction to persistence.The major ideas that are found in
object oriented programs / systems.

Whatis concurrencyandwhatare the problemswith concurrency,
and how can concurrencybe achievedon a single processor
system. Shared data and problems that can arise.

A brief discussioron the differenttypesof distributedsystemhow
theywork and comparewith eachother. Distributed objectsand
why they would be useful.

A descriptionof the parts of the COBOS'idea" that havenot been
included in the project, to give an overall view of the ideas.

This seemsa very simple question but dependingon what "object oriented"language
you subscribeto, you will getdifferentdescriptionsBut, the basicpremisethat most
of themseemto follow is of anitem that hasboth attributesand behavioursThese
behaviours(and someof the attributestoo) may be commonto the classthat the
objectbelongsto, or maybetotally unique.Eachspecificitem is calledaninstance of
the object. To makethis a little clearer,hereis anexampleto showhow C++, creates
and uses classes and instances.

In definition part of the program, or in a header file:

class buffer{
char data[12];
int head, tail;
public:
buffer(void);
void add(char value);
char remove(void);

h

Whathasbeendoneis for the class"buffer” to be createdThis definesthe objecttype
andwhatthe objectcando. Thetwo functions"add" and"remove"arethe behaviours
of the object. The third function "buffer" is a very specialfunction that is called by
defaultwhen an instanceof the objectis created.You may notice that the objectis
splitinto two partsseparatedby the word "public”. The partsof the objectbeforethe
"public" statementare local to the object and cannotbe accessedrom outsidethe
object. while the statementgollowing the "public" are allowedto be accessedrom
outside of the object. At this point no actual object exists!

So somewhere in the program:

buffer keyboard, drive;

keyboard.add("w");

Whatthis hasdoneis to createtwo instance®f the "buffer" object,which now canbe
used and accessed. The second line would accedetfmard"instanceof the object
and do whatever the "add" behaviour was written to do.

From this very brief view of what objects do, you v ableto seethe majorfeatures
of what object based systems can offédre first andmostsimplestis the reusabilityof
codeandstructuresWhatthis meands that the "buffer” structurein the examplecan
be usedin any part of the system,and onceit hasbeentestedfully you know it will
work anywhereelse.Also useof the sameobjectsin new or extensionf the system
is made easier and less programming (and knowledge) of the system is needed.

In say a payroll applicationwhere the employeerecordis amendeddirectly by the
programit is very easyfor simple programmingerrorsto eitherwrite to the wrong
entry,or to write the wrong datato differentfields. With anobjectof type employee,

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

andhavinga sealedfunction doing the updatesno otherfunction cangetto the data
so only this ondéunctionneedgo betested.This improvesthe securityof the systems,
and the reliability.

And the final advantageo usingobjectsis that they help with managingcomplexity.
That is the programmerthat is writing the bank paymentsystemdoesnot needto
know how the employeegpaywasworkedout, whathourswasworked,or the format
that thesethingsare stored.The programmemwould only needto know the function
nameget_payand have a list of the employees.

With programminganguagedsike C++ the objectsthat are createdare not persistent,
this meansthat the object itself doesnot exist after the programhasbeenremoved
from the memoryof the computer.The datafor the instancesan be storedin data
files, but thesavill not be objectsandareaccessibldy any programthathasaccesgo
the data.Anotherproblemis thatif the programis changedandthe objectdefinition
amended)thenit will be likely thata programwill needto be written to covertthe
datato the new objectsformat. As the datawill be sitting on the drive, thereis the
possibility thatto makelife easiermorethanone objecttype canbe written to access
the same data, giving rise to problems with inconsistency.

A way to get aroundall theseproblemsis the ideaof persistent objects.The basic
idea is that when a systemis being developed,say a payroll system,the business
analyst will define certain object types that the system needs, i.e. the empidyees.
set of behaviours can also thecidedfor the objects.Sothefirst thing the applications
teamwould do, would be to createtheseobjects.The objectsnow would be totally
free-standing on the system, and applications would just cdlktimeviouror services
to accesghe object. This way no applicationcandirectly accesghe datawhich does
several things: first it cuts dowthe chance®f programmeerrorsmisreadinghe data
on load. Second,it will heightensecurity as some data cannotbe accessedrom
outsidethe objectand applicationscannotever seethe data. Finally, the utility that
createsthe objectscan disallow changesthat would invalidate the object, or make
applicationsthat use the object themselvesnvalid. As objectsare free standingit
would be possibleto allocate accessrights to eachinstance,so for example,only
certain departmentsould be ableto accessndividual employeeshatworkedin there
own department.

A featureof objectorientedsystemss inheritance. Thisis whenanobjectis madeup
from one or more previously created objects. for example, you coeddea manager
object that takes themployeebject and adds a fiefdr the companycarregistration.
All the serviceshatthe employeeobjectusesarestill valid, anda setof serviceswill
need to be added to allow for the access to the company car field.

Thereare problemswith inheritanceand persisteniobjects.The two mostimportant
are:

A) should inheritance be allowed?
Should a changeto one object be allowedto affect objectsall acrossthe system?
Eventhoughttheseobject all share similar or evenidentical behaviourshow can

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

thesechangesbe checkedand how can the effectbe monitored?Inheritancecould
(in a badly monitored system) add a small element of chaos!

B) how would it be handled?

This seemsa silly question,but would an inherited function be included in each
object?would it be doneby referenceto the baseobject. If so thenthe objectsno

longer becomedree-standingand would needboth forward and inverseconnections.
Then you gepossibilitiesof circular inheritance whereinheritancesare gainedfrom

objectsthat theyinherit from. If they whereembeddedthenyou get the problemof

inheritances becoming out of date when the base object has been amended.

The modelthat | havefollowed is the one that doesnot allow for inheritance,it is
simpler to apply and has no awful side affects.

Concurrency in computing is about running more than one proctésssaimetime on
the same computer. Most computersare Von neumann type single processor
systemswhich meanthat they can only run one processstreamat a time. This is
againstparallel computersthat have more than one processorand can run multiple
processes at the same time.

Sothereareseveralproblemswith creatingconcurrentsystemsandthe mostobvious
of theseis, "how do you getmorethanoneprocesgo run on the samecomputerthat
only runsoneprocessat atime?". The systemwill haveswitchthe context, or change
the processorstateso that in the middle of executingone processit then startsto

executeanother.There are two main methodsfor achievingthis, which are pre-

emptive context switching and the non pre-emptive.

Pre-emptive switching

This wherethe operatingsystemdecideswhena taskis to be switchedand doesthe

switchingwithout the task knowing anythingaboutthe fact that it hasbeenswapped
out. This is the bestway for concurrentsystemsto be designedas the programmer
needsto know nothing about how and when the task will be switched and the

applicationis just written asif it runson its own machine.Examplesof true context
switched operating systems are: OS/2, Unix, and most mainframe OS's.

Non pre-emptive context switching

Thisis wherethe applicationdecidesvhenit will releasecontrolbackto the operating
system so that the next task canrun. Technicallyspeakingnon pre-emptivesystems
areeasierto write asthey needlesstechnicalknowledgeandthe switchis madeby a

systemfunction. Also the applicationanustbe written into a programstructurecalled

a skeleton which handlesthe communicationwith the operatingsystem.Operating
systems like MS-Windows are non pre-emptive.

The natureof pre-emptiveswitchedOS'smakethemthe naturalchoicefor concurrent
systemsalsothey avoid the main problemsthat you get whenusing non pre-emptive
systemsij.e. if a applicationfails thenthe whole systemwill lock up, andits really up

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

to the applicationwhen it will let go, so that time basedschedulingbecomesa
problem.

When the contextis switchedthe whole machinestate of the old processmust be
saved,thenthe new stateof the new processamustthenbe copiedin to the machine.
On the 80x86 machinesthe hardwarehasfunctionsto do this anddatastructureghat
areusedfor loadingandsavingthe states(if you seeappendixA.1: ProtectedMode -

thereis a descriptionof this). Evenwith the hardwaresupportthe switch is normally
driven off a timer interrupt that interruptsthe executionof the processesandthen
does the context switch.

Running more than one processon the samecomputerscausesproblemswith the
sharingof resourcesSystemdataareassuchasthe memoryallocationtable may be
accessed at the same time causing problems, for example:

Free_space
Process 1 | Process 2 | Pointer

|

| read freespace ' | 0

roo swap - - - - - .

| | read freespace |

| | |

Lo swap - - - 24450)

| ' |

| add 100 | |

Il __ write freespace ap - o : 100
| 1 P write freespace | 50

Fig 4.1 Shared Data Clash

As you canseefrom fig. 4.1, two tasksusingthe samedataareawill clashandcause
an inconsistencyof data.In the example,both processesvill usethe samememory
areathinking that they own it. Also, that the memoryfreespacepointerwill now be
wrong andwill causea third attemptto allocatememoryto clashwith the first tasks
allocation.

This canbe avoidedby usingmutual exclusionto restrictaccesgo the sharedareas.
Thereare severalmethodsfor doing this, but the simplestis the binary semaphore

Each task that needs to use skeenaphoréasto wait for it to becomefree,andwhen
it has finishedwith it, it will signal the semaphoreYou canusea binary semaphoré¢o

solve the above problem.

Freespace
wait
Process 1 ! 100
wait

Process 2 ! 150

signal semaphore

Fig 4.2 Semaphore usage

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Also, anothemproblemwhenrunningmorethanone processon a single systemis the
sharingof resourceslf one process'grabs”the disk drive for the whole of its run,
then all otheprocessethatneedto usethe drive cannot,andwill haveto wait for the
procesghathasgrabbedhedrive to finish. This canbe avoidedby makingthe device
independentrom the applicationsThis is achievedoy usingmessagepassingto send
requestgo the device,andfor the transferof datato andfrom the device.Also, each
device will need both a queuehold the requestshatarewaiting, anda taskthatwill
service the devices from the data in the queue.

This wheretwo or more piecesof softwaresharedataor informationwith eachother.
These maybe on the same system. There are manyohagfsievingthis, but the three
most common, are:

Co-operating Applications

Theseare mostly usedin word processingand desktop publishingapplications.The

operatingsystem,or controlling application)providesa setof functionsto allow one

applicationto embeddatafrom anotherapplicationinto itself. For the datato be used

by the primary application(the applicationthat hasthe dataembeddednto itself) the

secondaryapplication(or a subsetof itself) that createdthe datathat was embedded
will have to be called by the primary application. See fig 4.3.

| r——-
L} il

Primary Application Secondary Application
Fig 4.3 Co-operating Applications

This sortof systemis usedby Microsoft'sOLE (ObjectLinking andEmbedding)n its
range of MS-Windows Operating systems, and the in the OSF's OpenDoc
specification All the diagramsn this reportwheredrawnusingVISIO Expresswhich
is the secondaryapplication,andthe text wasenterednto MS-Works, which wasthe
primary application used for creating this report.

Client Server Applications

This method allows for some independenceof data. There are two types of
applications,CLIENTS and SERVERS.Client applicationsmay requestinformation
or servicesfrom serversthat maybeon the samesystemor on a systemon the other
sideof theworld. Serverapplicationswill actionthe servicesor create/locatehe data
from its local system.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

* Client " I
\request I I @
(User)} » Client request}b Server
request
=3 S O
ser I_ I_ .

— c— —

Computer Computer
system system

A client would be somethinglike a banktellers screen.When a requestto deposit
moneyin an accountis made,the client would sendthe requestto the server(which

would be mostlikely in a regionaloffice) which thenwould servicethe requestand

thenreply to the client thatit asbeendone.Client and Serversare normally designed
togetheras part of the sameapplication.Any amendmento either the client or the

server, may need the other servers or clients to be rebuilt.

Distributed Objects

This is an extensionof objectorientedprogrammingandthereare two variationsof
the theme.The first is similar to the client / servermodel and relies on a system
functioncall the ObjectRequesBrokerto allow accesgrom otherapplicationgo the
objects. The objects themselves are wrapped up together to make a server.

Application

* .. The Application may or may not be
1 on the same computer system as
1 the Object request Broker

object
request

A

Object Request Broker

\object | {object | |] object |object

Computer System

Fig 4.5 Distributed Objects

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Middleware specifications like COBRAare written like this. See [otte 96] for a
better description of how the ORB and the server structures work.

The secondtype are the free standingobjects.Wherea call is madedirectly to the
objectsservice,sothereis no needfor havingservergo control the accessBut there
will still needto be a controlling systemservicethat will load and close objectson
need.With this type of systemamendmentsnadeto one objectwill only affect the
single object. Also the datafor the objectwill be directly tied to the object'sservices
andwill not be loadedfrom a file. This makesobjectsand the datatotally separate
from the applications anchnbe designedseparatelyCOBOSIs designedo be of this

type.

Thebasicideafor the COBOSsystemis to getawayfrom the COBRA model(seefig

4.5), wherethe objectsare supportedoy a serverprogramthat controlsthe accesgo
the objectTheobjectsin this modelarenot "truly” independenéasthe serverprogram
holds the objectstogether,and when one objectin the serveris amendedhen the
whole server will need to be rebuilt.

Anotherone of the ideasfor the systemis to allow for objectsand applicationsto be

distributedacrossmultiple processorsand allow for the applicationsto be executed
acrossmultiple processorsThe systemwill alsoload balance the processortasks
across the processors that have been connected togetipgoaess groupto act as a
single computer.

The systemdividesinto sevenspecific sub-systemsthe functional interactioncan be
seenin fig 4.6. It may be notedthat only three of thesesub systemsmake up the
COBOS final year project.

System
Object Manager

Builder I Load
Balancer

Kernel

Loader

ObJeCt Network

ftra, //

Fig 4.6 COBOS system functions

1cOBRA stands foCommonObjectRequesBrokerArchitecture, and is an open specification, that
has been designed by the OMG.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The three parts of the overall systemthat make up the final year project will be
describedully in thetechnicalapproackchapterwhatfollows is a brief descriptionof
the other four sub-systems.

Object Builder

The objectbuilderwould be a systemapplicationthat would compilethe sourcecode
for the objects and createthe base object structures.As objects are totally free
standing the objects will not need to be written inghmelanguageso objectsthatdo
mathematicafunctionscould be written in FORTRAN, whereas artificial intelligence
or knowledge based objects/applications could be written in LISP or smalltalk.

Sotheobjectbuilderwould be an applicationthat could call the differentcompilersas
needed.This would be driven by the sourcecodeitself which would containas its
header information that language (and possibly version) that it is written in.

It may be notedthat applicationsgn this systemcannotcreateobjectsthemselvesbut
can only create instances of objects that already exist on the system.

System Manager

The system managerwould be the user interface function and would have the
responsibilityfor controlling the logging on and off of the users.It would alsobe the
application that would both load and close applications, and the system itself.

Load Balancer

With a processgroup a setof computersare groupedtogetherto make a virtual
computer that is to be able to run the same application athesgroupof computers.

But to do this effectively if one computeris overloadedjt will makethe application

run slowly. Soif the load could be spreadevenlyacrossthe groupit would makethe
system more efficient. This is the job of the load balancer. It will communicate with the
otherprocessor the group,find out which oneshavesparecapacityand shift tasks
between the processors to even out the balance.

This also creates minor problem,if oneof the computerss of a slower,thenaneven
spreadof the workload would not be advantageousSo eachprocessorsvould have
annumberof availableslotssetup soto regulatethe numberof tasksthatit is to run.
Eachprocessoin the groupwould havea local list of the other processorsandthe
availability at lastcheckof slots. Theideafor this sothat priority for slot requestsan
be given to the least loaded processor first.

Network Gateway

This taskwould control the accesdo the networkfor the processothatit is running
on. Also aspartof its responsibilityit would handlethe interprocessnessaggassing
for objectsand itemsthat are spreadacrossthe processgroup. The communication
betweenapplicationsandobjects,evenwhenthey are spreadacrossthe procesgyroup

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

shouldbe transparento the application.So the messagepassingpartsof the kernel
will sendmessageso the gateway,asif it was the targetitself. Then the gateway
would communicatehis to the gatewayon the targetmachine which would thenpass
it on the real target.

The Network Gateway,the Object Control Systemandthe Load Balancermakethe
system able¢he run acrosanultiple processorsThe kernelversionusedfor the project
doesnot havethe global realm searchfunctionsthat would be neededfor loading
objectson remoteprocessorsThis would needthe networkgatewayto be written for
it to be tested,and this is outsidethe scopeof this project. But the processgroup
would look like (see fig 4.7).

Loaded object
Process slots Task List Table

Load Node List Object
Balancer Control
Y System

Network

Gateway

NODE)

NODE < > NODE

Fig 4.7 Process group and inner node links

The final area which needs to be covered here is how would a language acd¢aks and
to an object. Allowing for global realms,which are simply realmsthat exist on more
thanoneprocessoran objectwould simply be calledby reference An examplecall in
COPLEZ:

@COPLE:application!monthly_pay
instance to_pay of department_x:employee_object;
forall to_pay with pay_round = "monthly"

$to_pay.calculate_pay;
total_cost := total_cost + $to_pay.money_due;

3

Thefirst line of the codeis simply so the compilerknowswhat type of functionis in
the sourcefile. The secondine createsa variableto hold the referenceto aninstance
of the object. This instancecannotbe usedto hold referencegdo different objects.It
could have been set up to only reference one particular instance of the object.

2 CobosObjectProgrammingL anguadt, which is a basic language designed for the COBOS system,
a BNF description of the language is included in Appendix F.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The forall statementill searchall instancef the object.But usingthe with part of
the statemenit will only actionthe statementor instancef the objectwith thefield
thatmatcheghe condition.In theforall statementheto_payvariableis usedwith a $
in front of it. Whatthis doesis tell the compilerthatthe instanceof the objectthatthe
variable points to, is to be used and not the variable itself. This would translate to:

department_x:employee[to_pay].calculate_pay;

In the above sample of the application, éneployeebject is used. A simple definition
of this object would be as follows:

@COPLE:objectlemployee

integer hourly_pay;
integer money_earnt;
integer hours_worked,;
string pay_round[12];

void employee(hourly _pay,pay_round);

void calculate_pay()

{
|3

integer money_due()

{
|3

money_earnt := hourly _pay * hours_worked;

return money_earnt;

The aboveis a vary simplistic definition of an employeeobject. There are three
servicesemployeewhich is a constructor anddefineswhat variablesmustbe present
in the employeeobjectwhenit is createdcalculate_paywhich actuallydoesthe work
for the object. With the last servicebeingmoney_dueavhich simply returnsthe value
held within the object. The datathat makesup the objectare definedbeforethe first
serviceis describedin this casebeforethe employeeservice.Again, the @ line at the
start of the code will inform the compiler what type of object is to be created.

Theaboveis just a brief overviewof the ideasthatlay behindwhat hasbeendesigned
andwritten asthefinal yearproject,andshouldgive anideaat whatwasbeingaimed
at when the COBOS project was being designed.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

A High level descriptionof the functionsand sub systemsf the
COBOS project with a basic description of how they work.

The description of the data structures of the system,and a
description of how they work, and why they are there.

A detailed descriptionof how each of the sub-systemshat have
been defined in the Functional Overview work, and how it
interactswith the data structuresthat are definedin the structural
description.

A basicdescriptionof howthe COBOSsystemnis loaded,and how
the PC is switchedinto PMODE. A more detailed descriptionof
how PMODE works will be defined in Appendix: A.

Why the installer is needed,what the problemswhere with the
design of the installer. A description of the MS-DOS file system.

How the complexityof the systemwas managed.The standards
used when writing the code.

The COBOS project involves the use of the whole of the IBM PC, and it totally
displacesvIS-DOSwhile it is running.To do this it needsseveralsystemso operate
the specificpartsof the system As you canseefrom fig 5.1, thesesystemghemselves
aresubdividedn to sub-systemgEachof thesesub-systeméaveresponsibilitiedor a
specificareaof operationsAs someof thesesystemare quite complexhereis a brief
overview of each system and the sub-systems it contains.

Memory Block
DSK file Allocation Device
finder Vid
MDSIO Task Control laeo
sub-system
initaliser
Exception
User Input Handler
PMODE
switcher The Kernel
DOSs Open Close
return Object Object
New Find Delete
Instance Instance Instance
The Loader .
Object Control System

The Loader

The areaof responsibilityis to load the kernel,but to do this it mustpreparethe IBM
PCfor this, andit mustalsoswitchthe processomodefrom real mode, (which is the
modethat MS-DOS runsin), into protected mode which is the native state of the
80386+ processorsThereis a more detaileddescriptionof how this works in the
technicalappendicesasthis doesget rathercomplex. The loaderhasfour main sub-
systems:

The DSK file finder

This hasthe function of finding the DSK file that COBOS needsfor is own file
system.COBOS usesa different methodfor allocation the disk spaceand for
referencingdata on the disk drive. This method clasheswith the MS-DOS file
system, but this clash can be got around by creating dildishatcanbe usedasa
"virtual disk" so that COBOScanallocateits disk spacein its own way without
interfering with the MS-DOS file systerDSK is an abbreviation of disk.

The intialiser

The major systemstructuresall needtheir dataareasdefined,andasthe loaderis
designed to return the PC back to real mode after the system has beertlussed,
datastructuresneedto be compatiblewith DOS. As the systemusesa couple of
devicesin a differentway from MS-DOS, so this systemwill changethe way that
these devices operate.

The PMODE switch

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The modeof the processoneedsto be changedrom realto protectedmode,but
beforethat is donethe processomralso needscertain systemregisterschangedso
that it knows where to find some tables that are needed.

The Real Mode switch

After the operatingsystemhasbeenexited, this subsystemwill returnthe process
andits registersbackto the statethat MS-DOS requires,which is the protected
mode.

The Kernel

Thisis the heartof the systemandwhile the COBOSoperatingsystemis runningthis
system controls the computer. The hardware systemsand the peripheralsare all
handledby the kernelfunctions.The kernelwill alsodo the pre-emptiveswappingof
the system tasks using the PIT (programmableinterval timer) for the context
switching.

The Memory Allocation System
This systemcontrolsthe way that COBOS allocatesthe PC'sRAM. It will also
create theselectorsanddescriptors that are needed for protected mode programs.

The Device Sub-system

The datadevicesin the COBOS systemhave beendesignedto work as block
devices.This meanghatthe devicewill only transferwhole blocks.All accesseto
the devicesare thought a systemfunction called block request,which has the
parameteof which devicethatthe requesis to be sentto. The devicesub-system
has the responsibilityof controlling how the block deviceswork, and have the
requests are scheduled. For each device tharenterrupthandlerthat dealswith
the hardwareinterruptsfrom the device.Also, thereis a devicetaskthat actually
controls the transfer.

Task Control

The main responsibility of this part of the system is the adding and removihg of
tasksfrom the systemaswell asthe contextswitchingof the applicationsthat are
running.The actualloadingandclosingof applicationson the systemis not part of
the task control sub-system.

Exception Handler
The exceptionsn protectednodeneedto be handleddifferently from the way they
arein realmode.Someexceptioncanbe recoveredrom andsomecant.But for a
protectedmodeoperatingsystemthe exceptionhandlerwill haveto be setup asa
systemtask,sothatit hasaccesgo the restof the segmentson the system.It will
needthe accessothatit cancloseanytaskor extendanyallocationthat causedan
error.

User Input
This is a collection of functionsthat respondto the keyboardand mouse.It also
includes functions that will redraw and clear the mouse pointer from the screen.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

MDSIO (Mass Data Structure Input Output) system

This controlsthe accesseso the MDSIO objects. The permissionsand creating
anddeletionsof the "file" structuresare doneby usinga setof functionsthat are
accessible to the tasks and applications at every system level.

The Video Control system

There are two main responsibilities of the video control system, and thdiystiye:
to createand deletethe icons and virtual screenghat are the basisof the video
system.Secondly,to updatethe "real" screenfrom the virtual screenghat have
been updated and flagged updated by the applications.

The Object Control system

The control of the objectsis done by a small set of functions that are directly
accessiblgo the tasks.The control and accesds meteredout by a setof tablesthat
holdswhattaskis usingwhat objectandinstanceof the object. This systemusesthe
MDSIO functions to gain access the objects as they are stored on the devices.

The systemis basedon nine tablesthat hold the data that the systemneeds,plus
severalsystemstructuresthat hold the datathat specific systemobjectsneed. The
connections of the data structures can been seen in fig 5.2.

Thereare two more tablesthat are not on the systemthe IDT and GDT which are

Task table

WSO Hande

Access Data

ONODE Buffer g’:ff'f'%?'//77//

Code

Device Data

Device Queue

Memory

Object Allocation > TsS
Table
Table —

Stack

Level 0 Stack

Service Code :
sevice Message index
description il Message Space
Loaded Object %/////////////////////'% iy
Table Instance Space o %
I
Virtual Window

Hot Spot
Table

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

systemtables, and are defined in the technical section as there are Intel 80386
structures. Note: the square boxes are entries on the tables.

Device Table
The devicetable is usedto hold the referencedatafor the block devicesthat are
loadedon the system.It is referencedby the

2 0 ;
_ devicenumber,which will simply be the index
d_device_name . .

4 number of the device in the table.
8 Fig. 5.3 showsthat the table holds two fields
12 thed_queue_segndd_handler that are used
16 1d_handler d_queue_seg when adding block requeststo the devices
20 |d_Fat (low word) d_status .
24 [d fat_buffer d.fat (high word) queue.The d_st_atusword IS u_sed to cc_)ntrol
28 [d_fat_block access to thdevice.Thed_device _names not
32 |d_fat_size usedas part of the systemas written, but will

Record size = 34 bytes be neededvhendevicesareto befound,added

or removedfrom the system.This would be
part of the system manager.
The set of fields that start with "d_fat" are alldimwith thefile allocationtableof the
device.d_fat_bufferholdsthe segmenthatthe deviceusesasits own fat buffer. The
field d_fat pointsto the sectorthat holds the fat, it also tells the systemwhat the
devicesfirst block is. d_fat_blockholdsthe currentblock in the fat buffer. The task
field isd_fat_sizewhich holds the number of blocks that the fat uses.

MDSIO Table
This table holdshe informationneededvhena
2 0 MDSIO object is openedfor access.While
md_name [md_owner objectsare beingdeletedor createdentriesfor

them will be inserted into the tables. The
objectsarereferencedy the index numberof
the entry in the table. To know whenan entry
in the table is not being used, the owner is

checked to see if it is null (is equal to 0000).
32 | md_realm

All MDSIO namesare 32 byteslong. So the
majority of the recordis takenup by the three
namesthat are associatedwith each object.
The useof thesenameswill be describedvhen

the MDSIO system is described below.
64 |md_group

The two fields md_MDSIO_pos and
md_MDSIO_pos.bloclare usedto locate the
ONODE of the object. The md_bufferholds
the selectorfor the segmenthatis usedasthe

% [md MDSIO_pos | objects handle,and the md_alloc_numholds

100 [md_MDSIO_pos.block the reference to the_lalloctablefor thehandle.

104 | md_buffer md_type | md_lock The handleselectoris usedby some MDSIO

108 md_alloc_num functions to accessan opened object. The
Record size = 110 bytes md_typeandmd_lockfields describe the access

that is being made to the object.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Task Table
This table holds all the applicationsthat areloadedto run on the system.Evenif the
task is suspendedthey will still exist in this

2 o table.This structureis usedto selectthe next
Forward_link Back_link task in a round robin fashion. The two links
4 |TSS_seg TCB_seg (forward and back), are used by the task

switcher to find the next task in the list.
Record size = 8 bytes

The TCB_segholds a selectorthat points to

the Task _Control_Bloclstructurewhich holds
all theinformationthatthe systemneedgo know aboutthe task,andthe currentstate
of the task. The TSS_segfield holds a selector to the Intel 80386
Task_Switch_Segmenthich holdsthe currentCPU stateof the task. This is usedto
actually switch the tasks. This structureis basically the structurethat drives the
operating system.

Object Table
The object table is referenced by the index nurobéne entries.It holdsthe detailsof
2 o an object that is being accessedby an
o_connections [o_MDSIO_num application.
;‘ g—b:’:/';—ent'c’;":eef o Most of the fields are referencesneededto
I o o_service_desc accesghe instancesof the object. The three
16 |o_first_inst fields of mostinterestarethe o MDSIO_num
20 |o_last_inst which holds the index numberof the objects
24 [o_permis | MDSIO entry. All object are MDSIO data

Record size = 25 bytes objects and r_nust be openedby using the
MDSIO functions.

The o_service_dests the selectorthat pointsto the segmentthat holds the service
headerinformation so that applicationscan find the referencego the servicesin the
servicecodearea.o_service_codes the selectorthat pointsto the segmenthatholds
the actual code for the services.

Memory Allocation Table

The memoryallocationtable hasthreetypesof entries.Entrieswith no size are free

entry and can be filled. The entrieswith a size but with a null owner, are free space
recordsthat hold the areasof the RAM that

m_size ? : have not been allocatedby the system.The

4 [m_selector [m_owner final type are allocationswith both size and

8 |m_address owners,theseare memoryallocationsthat are
Record size = 12 bytes in use.

The m_addresdield holdsthe linear memory
address of the start of the allocation. The
m_selectois the GDT tableentryfor the allocation,andis the selectorthatis created
so that the allocation can be accessed by the application/system function that needs it.
The Loaded Object Table
The loadedobjectentry, ties the applicationsuseof anobjectandits instancedo the
object itself.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The lo_app_numfield points the application
thatownsthe entry. Thelo_object_numis the
P 2Io S 9 objecttableindex for the objectthat this item
4 [lo_inst_space o inst_num _references.The Io_m_st_numls the instance
index referenceof the instanceof the datathat
Record size = 8 bytes is currently in the instancespacebuffer. The
lo_inst_spacefield holds the selector that
points to the segmentthat holds the instance

space buffer.

The Hot Spot Table

The hot spottableholdsthe informationon all the screenelementgwith exceptionof

the mouse).It is calledthe hot spottable becauseall graphicelementscan be click
with the mouse causingthe systemto take

2 0 someaction, i.e. that areaof the screenthen
hS_tOp_X hS_Owner beCOmeS Ilhotll
4 |hs_bot x hs_top y '
8 |hs_max_x hs_bot y .
12 |hs_rel_x hs_max_y The table allows for two typesof objectto be
16 |hs_task hs_rel_y in thetable. Thefirst type is the virtual screen,
20 |ns_message (low) | hs_mess len _ this is selectedby a bit in the statusword.
24 |hs_mess_seg hs_message (high)
28 [hs,_graphic Wha_t th_|s type is simply a wmdow_ that the
32 |hs_status hs_graph_seg applications can use to display their data.
34 hs_chain
Record size = 36 bytes The secondype of entryis theicon, andthis is

also selected by a bit in the stahy$e.Most of

the other entries in the table are used to
position the screenon the real screen,and to locate the start point of the window
within the virtual window itself. (This will be describesn the sectionon the video
system).

The hot spot can causethe systemto do one of two things when the mouseclicks
insidethe hot spot.Either,it cansendthelocationof the mousepointerrelativeto the
virtual window, or it cansendthe messagéhatis setup whenthe hot spotis created
to the destination task. the fighd_tasks the task that all messages are sent to.

The System Data Area

This structureis not shownin fig 5.2, asit holdsthe locationof all the tablesandthe
sizesof them.Also it holdsothersystemdata,for examplethe character maps This
dataareais usedto synchronisethe usagefor the systemtablesas it hasa system
semaphore area which all applicatidhat needto amendthe dataareaneedto assign.
This is alsothe areawherethe currenttask number,andthe currentTCB pointersis
stored.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The Object Control System and tkerneldivide into severalsub-systemasdescribed
in the functional overview. What follows is a more detaileddescriptionof how these
sub-systemsctually work, and how they interactwith the datastructuresthat have
been described his sectionhasbeenwritten to avoid usingany assemblecode,asall

the sourcefor the systemsareincludedon the sourcedisk. Also you will find both a
Yordon formatted specificationin appendix D, and the initial SDS-3 Design in

appendix F.

Memory Allocation

The basicdesignideabehindthe memoryallocationsystem,is to allow for dynamic
memoryallocation.To do this an applicationneedsto be able to both requestand
releasamemorywhenit wants.The way COBOShandlesdynamicmemoryallocation
is to usethe "memory allocation”or malloc table that holds both the free spaceand
the allocations that have been made to applications or system tasks.

During initialisation of the systemthe malloctableis setup with onefreespaceecord
that holds the entire memory areathat is availableto the COBOS system.When a
memoryallocationneedgo be made,the malloctableis searchedo find anentrythat
eithermatchesor hasmore memorythanthe call needslf thereis a freespaceecord
that matches the request size then is allocated to the calling task. If theisdogger
than the request,it is allocatedto the task, but only the size requested A new
freespaceecordis createdwith the sizeof the remainingmemoryleft over. If thereis
not a allocation that fits the request, then the memory is full.

Now, when allocations are releasedyou get the problem of how to collect the
"garbage",theseare the bits of the memory that either are the leftovers from the
allocations,or the freed memoryallocations.Theseneedto be collectedtogetherso
that the memory is not wasted and fragmented. There are many ways to do fars and
a betterdiscussionn garbagecollection,see[jone 97]. In the COBOSsystema very
simple garbagecollection schemeis used.What it doesis to check wheneveran
allocationis released,t searcheghe whole malloc table to seeif any of the free
allocations are concurrent. If so the sife¢he higherallocationin memoryis addedto
the lower allocation,and the higher allocationis deleted.A more proactive scheme
could be usedasthe systemis segmentedandthe allocationscan be movedwithout
causing any problems with the applications.

As the systemusesthe segmentatioof the 80x86 processorsior eachallocationthat
is createda descriptormust be createdin the GDT table. When the allocation is
released then the descriptor is also removed from the table.

Block Device

The block devicesystemis probablythe mostcomplicatedsystem.lt is basedaround
two tables,the systemsdevicetable and a device queuethat is local to the device.
Synchronisatiorof the tasksis doneusingthreesemaphoreghe systemsevicetable
semaphore, and two that are local to the device. The devices all run as thekask
list, which are activate on need tasks. This meansthat thesetasksare suspended

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

whenthey are not needed.So the devicestaskwill only be runningwhenthereis a
transfer to start, or a block to transfer. Fig 5.10 shows how these elements fit together.

Device Queue

add entry

A

check

Block
Device

.

[

Device active flag

/

set signal &

wait

i

activate

Task Suspend flag

"\

activate

Device queue flag

Message Queue clear

signal &

\ wait
remove entry v

BN

b

suspend

-

Interrupt

Handler <int=

Device
task

The easiestof thesefunctionsto describeis the interrupt handler, this function is
activatedby the hardwaredevicecausinganinterrupt.lts purposeis to clearthe tasks
suspendbit in the task's Task Control Block (TCB), so when the task is next
scheduled to run it will be run. (see the section on the task system for more details).

The block requestfunction is slightly more complicated,but all it doesis usethe
devicequeuesemaphoreéo makesureit hasexclusiveaccesdo the messagejueue,
for the device'srequestsThenit addsthe requestto the devicelist, thenreleaseshe
devicequeue.Thenit checksto seeif the deviceis alreadyactive,if not it setsthe
devices active bit, and unsuspends the task. Otherwise it will just exit.

In its simplestform the devicetask readsa requestfrom the local device queueand
actionsit. But, it is a bit more complicatedthanthat. To keepthe tasksflowing, and
not tonot havethe devicedriver holding up the systemwhile it doesthetransfer.The
device task runs in the applications queue, and suspends itself aftebleckiyg read.
It is unsuspendedy the interrupthandler(as describedabove),soit canthenaction
the transfer.The devicetaskis pre-emptivelyswappedn the sameway as any other
task on the system. How tasks are swapped will be described ltdtet'iask control"
section.

Why all this level of complexity?The devicedriver could be a lot simpler,i.e. if you
follow the DOS methodof basicallymaking the systemwait while the transferis in
progressThe DOS devicesystemis a lot simplerto write andis lessproneto failure
and deadlocks,than the one usedfor the COBOS system.But the answerto the
guestionis in the abovestatementfirst only one applicationcanusea deviceat any
one time, and a lot of processor time will be wasted while the devicetbedésation
on the drive and readsthe data. With the systemdescribedabove, more than one
applicationcansenda requesto the drive, andthe systemcancarry on processinghe
applications that are not waiting for the devices 1/O.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Another feature of this device architectureis that on completion (or failure) of a
requestthe device sendsa messageo the applicationwith the resultof its request.
What this doesis to separatehe 1/0O completelyfrom the application.So after an
application sendsa block request,it can carry on processing,while periodically
checkingits own messageueuefor the responsdrom the block devicethattells the
applicationif the requestworkedor failed. This meansthat the "busy bee"which you
getwhenusingMS-Windowsandotheroperatingsystemsthattells you the systemis
busyandcan'tbe usedat the moment.Will neverbe neededbecausehe systemwill
neverbe in a statewhere one applicationsrequeststopsall other applicationsfrom
doing other things.

Task Control

Taskswitchingon the 80x86 seriesprocessorss fairly complicated so hereis just an
overviewof how the task switcherworks form the programspoint of view, ignoring
how the switch is actually done (see appendix A - for a detailed description).

Thetasksystemhastwo separatereasof responsibility first to control accesgo the
tasks,andsecondlyto do the task swapping.Two separatestructuresare usedto do
this, thetasklist, (seefig 5.3), andthe TaskControl Block (TCB). The TCB holdsall
the task specific datathat the systemneedsto know aboutthe task, aswell asthe
indexes for the messaging system, and the message space for the messages.

A statusword in the TCB is usedto by the systemthe regulateaccesgo the taskand
the TCB. Eachof the systemfunctionsthatneedso accesghe TCB mustinspectthis
word beforeaccessinghe TCB. Any amendmentso the TCB, like addinga message
to the messaggueue mustsetthein_usebit beforethe TCB is amendedandclearit
afterwards.The taskswitcherusesthe exceptionandsuspendits to checkif the task
is allowed to be swapped in.

Thetaskswitcherusesa systemstructurecalledthe Task Switch Segmen{(TSS), this
is usedby the systemto load andsavethe stateof the taskduringtaskswitching.The
taskswitcheris a basicround robin schedulethatwill switchto the nexttaskthatis
available.The nexttaskto beloadedis pointedto by the forward_pointerfield in the
task_list andif the exceptionor suspendits are setthe taskis ignoredandthe next
taskin the queueis checkedIf thereare no tasksthat are availableto run, the task
switcherwill call anidle/halt loop which simply doesnothinguntil the nextcall to the
task switcher.

Thetaskswitcheris calledby eitheraninterruptcauseddy the system'dimer, or by a
software interrupt called by a running task. The task that is being swappedin is
allocated a time sldbf about1/40thof a second)butit canswapitself out soonerby
calling the swap function.

By usinga simpleroundrobin scheduleit saveon the systemoverheadhat havinga
more sophisticated scheduler would cause.

To addan applicationto the systemfirst a call to create_ TCBhasto be made.This
will createthe TCB structureandthe TSS structuresthat the applicationsneed.The

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

dataandcodesegmentsvill needto be addedto boththe TCB andthe TSS,theseare
not createdby the systemcall sothatshareddataandcodecanbeinsertedratherthan
eachapplicationonly beingableto usethe areascreatedfor them. After all this has
beensetup, a call to add_taskwill addthe applicationto the tasklist, andfinally the
suspendbit will needto be cleared,as create_ TCBsuspendshe new TCB wheniit
createdt. To removean application,delete_taskthendelete_ TCBnheedto be called.
The sequence for creating a task is:

call create_TCB

calladd_task

load data into data segment

load code into code segment

update TCB and TSS with the code and data segments
set code segmentpl (see technical appendix)

clear thesuspendbit

The TCB is usedwhenthe taskspassmessagebetweenthemselvesTwo functions
send_messagendread_messagare usedto do this. The messag&ueueis madeup

of four pointers,two to control the index,andtwo to control the messagepace and
an index and a messagespace.The index is a standardFIFO queuesee[thom90 -

p201], with entriesthat point into the messagepace.The messagepacealsoworks
in a similar way to the index, exceptthatthe headandtail areonly usedasfree space
markers, and to know when the space is full.

You may have noticed that the TSS holds similar dathe®CB, andthe TSScanbe
extendedto allow it to hold more data. This structurecould have beenusedto the
hold all the datathatis in the TCB, but dueto thelimitationsthatthe processoseton
the TSS's,it wasthoughtbetterto separatahe COBOStask datain a simple data
segment.

Video subsystem

Thevideo systemis basedon two typesof screerfurniture. Theicon which is a small
graphicthatis displayedon the screenandthe virtual screen which is usedby the
applicationgo displaydata.Both thesestructuresare storedin the hot spottable, and
the screenflag is usedto tell themapart.With the icon only the top_x top_y, bot_x
andbot_yfields are used when displaying the icon.

This area is
not displayed

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

With the virtual screen,the variablestop_x, top_y, bot_x and bot_y control the
positionof the virtual screenon the real screenThe otherpositionvariablesarethere
to allow the window to pan. This could be usedby say an architectureapplication
usinga massivevirtual screento showthe whole of a buildings structuraldesign,but
having a useapplicationthat controlswhatareaof the screencanbe seenby the user.
The point of this that the applicationneednot know anythingaboutthe structureof
the machine that is in use, and only what size screen that it needs. Agaiakéghe
video systemindependentrom the application.The variablerel_x, rel_y arewhenthe
display areastartsinside the virtual window, and the fields max_x,max_yare the
maximumsizeof the window. max_x,max_yarealsousedby the systemto work out
where each line of the display starts.

The videotaskitself is a taskthat is scheduledaswith all the otherapplicationsand
searcheslownthelist of hot spots,anddependingon the stateof the flagsin the hot
spotstatusword (seefig 5.9) either,drawsor clearsthe hot spot. The hots spotsare
linked togetherusingthe hs_chainfield with the top mostscreenbeingthe top of the
chain. A pointer in the system segment points to the top hot spot in the hot spot chain.

The screensonly allow for 16 colours,which are storedin pixel order, i.e. the first
four bits of the screerareaarepixel 1, andthe nextfour arepixel 2, etc... This means,
again that the applicationsneed know nothing about how the PC's video system
works, andit would bedownto thevideotaskto convertthe datafrom this formatto
the one that the card needs.

MDSIO system

COBOSusesa differentfile structurefrom the oneusedby MS-DOS. It is basedon
the devicesbeingableto allocatea singleblock to a requestratheraswith MS-DOS
only being able to allocateclusters of blocks. Also logical organisationof the data
structures is very different from the one used by MS-DOS. See fig 5.12 for the layout.

Therealmtableis similar to the root directory thatoperatingsystemdike MS-DOS
andUNIX use,exceptthat the only type of objectthatit canhold is the realm also

File » Data Onode
—» Source Onode

» Application —
L Code Onode

Table

—» Source Onode

» Object —
—» Service Onode

Instance
Onode

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

this is the only place that tmealms can exist.

Therealmis similar to the ordinary directorytype structure exceptthatit is flat and
thereareno sub-realmsaswith the directoryyou canhavesub-directoriesThe realm
holdsthe referencego the dataobjectsthemselvesThereare threeobjecttypesthat
are allowed to exist in the realm, and thasethe object,the applicationandthe data
file.

The data file is the simplest of these, and is similar to the staddtafile asfoundon
mostoperatingsystemsThe applicationcomesin two parts,the sourcecodewhich is
a simpleflat file, and the objectcodefor the application.The objectcomesin three
partsthe source,the objectandthe spacefor the instancesof the object. The realm
entry holds the starting block of the onode for each of these parts.

The COBOSdisk is basedon a bit fat wherethe index numberof eachbit in the fat
represents block on the disk. All the datastructuresare basedaroundthe onode
This structureholdsthe objectspecificdata, plus a list of all the file blocksthe have
beenallocatedto the object. Fig 5.13 showsthe physicallayout of the ONODE and
the fat. The realm itself also has an onode.

FAT

v
-1 previous block | next block previous block | nextblock —» -1

—— Block List —— BlockList

As well the realmthe MDSIO systemhasa logical structurecalledthe group this is
similar to the UNIX group and allows for objectsto be usedacrossrealms,so that
objectscan be usedby other realmsthan the owner without having to give global
permissiondo the object. This leadson to the areaof permissionsCOBOS usesa
similar permissionsstructure to UNIX, with objects being able to have global
permissionswhereall objectsin the systemcanaccesghe object.group permissions,
where the objects that belong the group can have access to the object. And finally local
permissionswhereonly applicationsthat belongto the samerealmasthe objectcan
haveaccesslt needsto be pointedto thatthe groupis a completelylogical structure
and has no physical structure on the disknameof the groupthatanobjectbelongs
to is stored in the onode for the object.

On the primary block devicefor the systemthereis a realm called the node is this
realm all the system applicatioasdobjectswill bestored.Thisis the defaultrealmof
the system.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The MDSIO system is made up of sevenctions,two areusedto controltherealms,
and the other five are usedfor accessingand maintainingthe MDSIO objects.The
objectcontrol functionsusea structurecalledthe handlefor controlling accesgo the
object. This structureis createdby the open_MDSIO_objecandis deletedwhenthe
objectis closed.The handleholdsall the informationthat applicationneedsto know
when accessing the opened object, and is a segmentiwhatbrencedy its selector.
The MDSIO functions themselves are listed in the API appendix.

User Input

The keyboardand the mouseare the two devicesthat the systembasically usesfor

userinput, otherscanbe addedasthe input systemagainis independenof the devices
themselvesand the input systemusestask messagingo passcommandsfrom the
devices to the tasks.

. Keyboard Keyboard o
interrupty - dler message I ost box 4]
a
> | send
8 message
2]
g
o
&
_ Mouse Mouse e
CINeITUptY andler [T MeSSAge B st box v
postbox task

As the devicesuseinterrupts,this causesa problemasto senda message function
needgo "wait" for the semaphoren the TCB. But, aninterruptcannotwait, asit has
solecontrol of the systemandthe TCB will neverbecomefree. So,to getaroundthis
problem an additional system task calledpgbstboxhasbeenaddedto the systemAll
this function doesis to take any message$rom device specific messagereas,and
sendthe messageto the taskspecifiedby the device.This taskis an activate-on-need
task and when a task needs to send a message it will unsuspend the task.

The keyboard task checks the system segment to fingstretaskandthis is whereit
will sendthe keyboardmessagef the taskhasits keyboardbit setin its TCB. For the
mouse, it uses theot spot tablé¢o checkio seeif anykeypressethataremadewhere
inside a hot spot. If so, dependingon the bits setin the hot spotsstatusword, the
mousedriver will eithersendits currentlocationandbuttonstateto thetask,or it will

set the message that has been set up to be sent in the hot spot table.

When the mouse is clicked inside a usereerthe systemconvertsthe mouseposition
into a positionthatis relativeto the applicationsvindow. This is doneso thatthe task
will not needto know whereits screens on the real screen.The conversionusesthe
following equation to convert between the two: (see fig 5.11)

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

user_relative_x = mouse_x - top_x + rel_x
user_relative_y = mouse_y -top_y +rel y

Exception Handler

The exceptionhandlerreportson the systemgeneratednterrupts,theseare interrupts
betweennt OOhandint 11h (17 dec). Theseare causedoy suchthingsastaskstrying

to accessegment®f the wrong type or of a greaterprivilege level. Theseinterrupts
fall into two categoriedfatal and non-fatal With the fatal exceptionsthe task that
causedhe exceptionis closeddown. With the non-fatalexceptionsontrolis returned
to the task.

So what the exception handler does is, display the §&idof the failing task,setthe
exceptionbit of the task. It thenwaits for the userto respondto the messageif the
exceptionwasfatal thenthe handlerwill closethe task.If notit will returncontrolto
the task.

The Object Control System (OCS)

The OCSis designedo controlthe accesdo the objectsthat are on the system.The
objects are all MDSIO objects and are accessedthought this system. The
application(s)that openthe object have no direct accesgo eitherthe objector the
serviceghatthey use.The only way that applicationscanuseobjectsis by usingcalls
to the servicesAlso, asthe objectsareindependentf the applicationsthereneedso

be a way of checkingthat the objecthasnot changedsincethe applicationwas built.

So when an object is loaded it also loads the parameter definitions aSeeéll. 5.15
for the layout of the objectasopenedAlso it is the responsibilityof the application
itself to check the format of the service.

The servicecodeis calledby the applicationusinga directfar call, which will setthe
processopointing to the codesegmenthatthe servicesarein, thenthe targetof the
call will beanear jump to the actualservicecodeitself. This way the positionof the
serviceswithin the servicecodesegments notimportantandcanbe movedif needed,
the only thing that needs to be the same in the service number.

The instancesare indexedby a referencenumberwhich is madeup of the block that
the objectis in, andthe index of the instancewithin the block. The instancesf the
objectmay be accesseeitherdirectly by usingthe referencenumber,or sequentially
usingthe references¢o work out the nextinstanceof the object. The objectinstances
usetwo levelsof buffering, the objecttableitself hasa block buffer, and a buffer for
the instance that the application is to use and the service has access to.

As said beforethe instanceis independentrom the application.So, the application
doesnot haveany direct accesdo the instancespaceandany call to a servicemust
passthe selectorof the instancespaceto the servicecall asthe first parameterThis
would be standard With all objectsthereare a few defaultserviceswhich are, next

previous locate newanddelete.Theseservicesare providedby the OCS itself and

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

MDSIO table entry

— parameter |

Do e

service description

service
index parameter

parmeter

parmeter

service description

Object Service Descriptions

|—> Service Code
» service L» Service Code

index

Object Services

are not actually part of the object. Thereis no needfor an "update"”serviceas the
service call will tell the system if the instance has been amended.

Theloadedobjecttable is alsousedfor instanceocking, thatis whena instances in
use by another application then no other applications can use thenstaneeThisis
doneby a simple searchthoughtthe instancetable to checkif the instancethat is
being requested has already been used.

The loader simply has to findherethe COBOSDSK file is, setthe memorylocations
for the systemglefaulttablesthendo the PMODE switch. After the systemhasclosed
the loader will also set the processor state so that it can then return back to DOS.

The loaderusesthe standardBIOS and DOS interrupt calls to accesghe disk, and
follow the MS-DOS disk structureto get the cluster numberof the DSK file. It
convertsthis into the logical block numberthat COBOS uses,using the following
equation:

logical_block = cluster_number * cluster_size + fat_offset

COBOS assumes that the COBOS fat starts on the block of the degils®assumes
the realmtable startson the first block right after the COBOSfat. (more detailson
how the DOS disk systemworks is givenin the installerdescription) Whatthe loader
hasto do nextis to createthe GDT andIDT entries.This usesthe MASM selector
numbergo work out the linearaddres®f theseareaghenplacestheminto a memory
areareservedor the GDT with the limits alreadyset. This is easierto seefrom the
code in the COBOS.ASM file.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The exceptionsin real mode take up the first 17 interrupts in the Interrupt

Descriptor Table (IDT), but DOS uses some of these interruptotberthingsandit
also overlayssomeof the hardwareinterruptsin this space.So the loader hasto
reprogram the PIC so that it starts at int 20h (32 dec), which is not usee®g and
is the last interrupt that is reserved by Intel. (see the technical appendix).

Thefinal thing thatthis function hasto do to loadthe systemis to switchthe PC into
PMODE. This is done in a number of steps:

Load the GDT and IDT with there sizes

Set the PMODE bit in the control register

Set task register to point to the default TSS - a task switch must copy the
processor state so needs a valid TSS to copy it to.

Do a near jump to clear the prefetcher

Far jump to the TSS that has been set up with the Kernel in it.

For thereturnto DOS the loaderhasto load some16bit code segmentavhich have
limits of FFFFFh(1048575dec),whichis all thatDOS likes to allow. The DOSIDT?3
needs to be reloaded.

The installerfunction finds the spacefor the COBOSDSK file, allocatesthe spacein
the DOS fat, then creates a file entry in the DOS root directory for the file.

There are severalproblemswith this scheme,the first is to do with the different
versionsof DOS. Older versions (before v4.0) use a 12bit fat, which the newer
versionsstill support,where the newer versionsall use a 16bit fat. Detectingthe
differencebetweerthesetwo fat typesis simpleasthe type of fat thatis beingusedis
storedin the boot record.But, writing codethat handlesboth typesof fat makesthe
installer function more complicated.The installer that has beenwritten for COBOS
does not work on a 12bit fat.

The next problemis that COBOSusesdirectblock accessedhatis all referencesire
directeda the actualblock, soif the DSK file is movedby any of the DOS defragor
disk efficiency programsthe COBOSapplicationsandfile systemwill be corrupted,
and may corruptother DOS files. This problemis got aroundby markingthe file as
systemand hidden which will stop theseapplicationsfrom moving the file around.
This is only a conventionthat DOS usesandtheseapplicationscan happily movethe
file, but the should not.

The installeralso createshe COBOSFAT andit placesthe first block of the realm
table in the DSK file. It will also place the NODE in the realm table.

3 DOS documentation does not mention that the real mode DOS uses the IDT for its interrupts, but on
all 80x86's after 80286, real mode DOS uses the IDT to find its interrupts. The problem with this is
that some code directly accesses the area 00h-400h which has traditionally been the DOS interrupt
area. So if the IDT is changed or not properly restored, DOS will fail

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

This project is fairly complex structurally, plus is it is written in assemblemwhich
obviously addsanotherlevel of complexity. To manageall this complexity a scheme
has been followed to make the writing easier.

Using one of the good features of I&SM assembleformat, all the structuresused
by the systemfunctionshavebeencreatedn the cobosh.asnfile andis includedin all
code. This allows for consistency across all functions.

All functionsusethe samecalling structureandall of the major functionssaveall the
systemregistersthat they use, and restorethem on exit. Another thing that all the
major functions do, is to set wall frames, using theenterandleaveinstructions.See
[tane90 - p303]for a detaileddescriptionof why call framesareused. The format of
the of the functions is as follows:

comment

Function Name
(is it an API function)

Description of what the function does.

parameter:
List of parameters is reverse
push order

returns:
What values are returned and
how they are returned

now the parameter references to the stack
now any local variables
definitions of any error codes used in the function

procedure_name: enter local stack space, 0
push the registers that need saving

*** the functions code ***

pop the registers that need saving
leave
ret or retf

This format is usedfor all functionsin the system.Also all labelsusedin the system
areprefixedwith anabbreviationof wherethey belongto. If thisis a systemstructure
like the devicelist the it will be prefixedwith "d_", if it belongsto a function like
send_messag#he prefix will be"sm_". All prefixesare unique,this causessomeof
the to vary slightly as otherwise they would clash.

The way the systemwasprogrammedvasto write all the functionsthat directly used
a structure,then test them on the structure making sure that they worked before
moving on the next structure.This meantthat the systemwas codedfrom the bottom
up andthe upperlayerfunctionscould usefunctionsandsub-systemghatit couldrely
on. This was important because writing code for PMODE, there are not any debuggers

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

that work correctly. So debuggingis done by the old fashionedtrial and error, and
using displaysto the screenas markersso you know where the programsreached
beforeit fell over. Thisis very slow, andif the problemcould be in one of manysub-
systems then this would be impossible to do.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

A general round up of how far tipgojectgot. How muchcodehas
been written, and what systems have been implemented.

Thingsthat was missedin the design,this that waswrong in the
designs,problemsthat where discoveredduring the writing and
testing stages.

At the pointwherethe projecthasbeenstoppedso thatthe final reportcanbe written
in time, the project stands at about 11,000 linemseémblecode,split betweerabout
40 functions. Of the 18 sub-systemsall but the object control systemhave been
written.

Progress against the milestones as laid out in the project plan are a follows:

Analysis of problem

A Yordon specification has been written for gystemandsometrial software
wasalsocoded.This wasdoneto assesshe feasibility andto testmethodsor
handling the core Kernel functions. See appendix.

Design of the Kernel
An SDS-3 formatted design hbsencreatedor the corekernelfunctions.See
appendix.

Design of the Loader

The loader has beendesignedto implementthe Kernel design. It will also
layout the basicsmemorystructureshat the Kernel needs.This hasnot been
formally documentedasit relies heavily on the BIOS and other direct DOS
functions. Sketches and outline designs are in my log book.

Implementation of the Loader

The Loader has been written (it is includedlo@SOURCEdisk supplied)and
it is made up of severalfiles. The three main ones being COBOS.ASM,
COBOSH.ASM, and CFINDDSK.ASM.

Implementation of the Installer

The Installer hasbeenwritten (it is includedon the SOURCEdisk supplied)
and it is madeup of a single file. The file is INSTALL.ASM, a compiled
version is on the INSTALL disk.

Implementation of the Kernel

This the currentphaseof the projectandat the point of writing this reportthe
basic structural layers of the Kernel have been written. These are the
memory_allocation system, the interrupt control systeetaskswitcher,task
creationfunctions,the basicuserinterfaceandwindowssystem Also the basic
devicedriver codehasbeenimplementedandthe higherlevel MDSIO system
has been written but not fully tested. The only areas of the Kernel
implementatiorthe havenot beendoneis the Object Control System,andthe
finishing touches on the graphics and system icons.

Progresshad beenslower than expected,someof the areasthat were overlooked
duringthe designphaseiook a long time to sortout. But evenwith this, the projectis
only at the most between 4 - 8 weeks behind the set schedule.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The major problemin writing this systemwas the problemof writing PMODE code
usinga MASM style assemblerwithout a PMODE debuggern(Seechapter5 - p32).
But apart from this there were relatively few major problems, with the exceyftibe
following which placedthe projectbehindscheduleTheseare discussedn the order
of the problems that caused the most delays.

Stack - MASM problems

Thisis really a collectionof severalproblemsonewasa simpleprogrammingproblem,
and othersare inconsistenciesn the way MASM dealswith stackinstructions,and
especially 32 bit stacks.

As a quick backgroundMASM setsitself up 16 bit segments(asthis is what DOS
uses),but this can be overriddenin the source code to make them 32 bit. The
processor sets its mode from the type of segment that is in use (there is a bit associated
with eachsegmenthatdefinesthe type of the segment)Now, to makethingsaslittle

bit more complicated, you can override the processor using some pseudo-instructions.

Thefirst problemis a programmingproblem,andin the codethe loaderusesa 16 bit

stack(asit is a pure DOS function), but the COBOSsystemitself uses32 bit stacks.
In the codeit hasnot beendefinedspecificallythatthe stacksshouldbe 32 bit for the
COBOSsystem.This shouldnot causeany problemsonceit wasworkedout thatthis

was the problem. This has bdeft in the codeandnot amendedecausehe structure
of the calls would have to be changed to allow for thbiBgushesandtherewasnot

enoughtime for this. But this did causea few re-writesasit could not be worked out

why some functions simply would not work.

All therestof the problemswhereMASM inconsistencieghe first type was because
all the COBOSdataareasaresetup in the processors 32 bits (including all stacks),
muststackinstructionswould push32 bit sizesby default.But, andthis is a very big
but, MASM would on some instructionsoverride the stack instruction (using the
pseudo-instructionsgndthis would not alwaysbe doneconsistently .This meantthat
the size of th@ush,andthereforewherethe datawasin memory,could not alwaysbe
known.

Also the 80386+processorsiavea setof addressingnodes,someof which are fairly
complicated(and not very useful!). But MASM had very seriousproblemsworking
theseout, andin the end noneof the exotic memoryaddressnodeswere usedwith
any stackpushor popas they could not be relied on to work as predicted.

The MASM errorstook a lot of time to find andalso causedhe problemthat every
time therewasa failure in a subroutinehourscould be spentmakingsureall the stack
push's and pop's where correct when there was nothing wrong.

Windows map function

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

With all systemsthat usewindows or virtual screensthereis the problemupdating
windowsthat underlieotherwindows. Therearethreewaysof dealingwith this. The
first andthe mostsimpleis the redrawall the windowsoverlappingthe window thatis
being redrawn.Another way of doing this is, if the window is not top, then don't
updateit. Finally, andthe mostcomplicatedjs to mapthe areathatis overlappedand
then only draw the area that has not been overlapped by the other windows.

Redrawingall the screenss very slow and asthe screenfunctionscanend up using
more machinetime than actually processingthe tasks.Redrawingthe top window
only, defeatsthe real purposefor having multiple windows. The final methodis the
bestbut it can be complicatedto implement. The final methodwas the method of
choice.

Thisis a problemthatis still outstandingoecausef the time it takes,andthe method
that | choosewas not the best,and it needsa completerethink. This did get quite
involved, to see thproblemsit would be bestto look in the projectlog book[anto 97
- entries starting 28/11/96]. But, in summang methodis too complicatedandworks
on an video line sectiomyhich hassimply too manyvariablesto be debuggegroperly
without a very good debugger.The methodthat shouldhave beenusedis to create
simple pairs of co-ordinates which would bound the are#fseatindow thatwerenot
to be displayed, this would cut down the complexity.

Mouse/Keyboard deadlock and the POSTBOX

This is an obvious error in hindsight. Whié problemis thatasall inputsto tasksare

handledby the handlersendinga messagdo the task. But, for the functions that

actuallyneedto do the messagesendthey needto hold the in_usebit of TCB of the

task. This will lock up the systemif the TCB is "inuse" by someother function, as

interruptfunctionsstop the timer from causinganotherinterrupt. So what neededo

be donewasto placea taskthatwasin the standardask queueto do the messaging
for the interrupts,asthis solvethe deadlockingproblem.This is whatthe POSTBOX
is for. (See chap 5 - p28).

Hotspot not being semaphored by the mouse system

This problemis very similar to the previousproblem, exceptthis happenswhen a
mousebuttonis pressedandthe screenis beingredrawn,asthey both try to hold the
hot spottable This one was got aroundby removing the "waits" from the mouse
systemasit doesnot updatethe mousetable. What this really leadsonto is that the
way someof the systemtablesare semaphoreds not correct,andit needsto be re
thought, may be using upddtagson thetables,or with "inuse"bits on the entries,or
making the tables holdersfor pointersto handlesfor the entrieslike the MDSIO
handle, described later.

Semaphore waits

In the initial thoughtsfor the COBOS project there was a semaphoresub-system
planned But, asthe analysisanddesignsweredonethereseemedessandlessreason

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

for havinga full semaphoresystem.This wasa mistake At the momentall semaphore
waits are done by a simple loop:

loop: if the semaphore is free then exit loop
else swap the task out, and loop

Thereis onevery simpleproblemwith this, thatif for somereasorthe semaphordas

been "got" by anotherfunction then that function fails. The semaphorewill be
permanentlysetandwill neverbe availableto any otherfunction. This meanghatthe
systemwould needto beresetor somefunctionthatwould free the semaphorevould

needto be run. But, this is not a simple problem, becauseat the moment the
scheduling is done using a simple rowabin schemeThis taskwould needto change

to check the semaphores making this task a lot more complicated, this is why it has not
been amended.

MDSIO handle

This is a problem that was being had with several of the system iahldsgtbecause
all the information on a systemobjectwas being held in its table, this would cause
bottlenecks asto amendany objectthe applicationwould needto hold the whole

table.

Sothe MDSIO handleis a solutionto this problem,and could be appliedto the hot
spot table, and could be used when creating the semaphoresystem which both
have/will have the samebottleneck problem. Simply, when the MDSIO object is
openedhe function createsa memorysegmenthat holds all the datathat needsto
change So the only reasonthat an applicationwould needto holdsthe MDSIO table
is whenit is creatingand deletingthe object, and not every time the objectis to be
used.

Also, the objectitself could be alsohavea semaphoref its own, alsosolving someof
the problems mentioned in the "semaphore waits" section.

Most of theideasusedin this projectarenot new,andcanbe seenin biggeroperating
systemsHowever,mostare found in operatingsystemsthat are designedfor much
larger systems. The basic ideas found in the designstfveitew amendmentthatare
mentionedabove)will makethis a very powerful operatingsystem,n my opinion. As
can be seen in chapter 4, the ideas for this project are fairly powerful.

As a first stepinto working out how to usefree-standingobjectsand speakingas a
studentof engineeringthe resultsof this projecthavebeena greatachievemenin my
eyes.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Independendistributedobjectswill be very usefulfor runninglarge and complicated
applicationsover networks. Taking the image of nodeson the net. and cyberspace
with computersanddatathat are accessedby treatingthenlike real objectsin virtual
reality, then you can get the generalidea of the direction of the COBOS projectis
going in.

The projectwasan attemptto designand build the core of an operatingsystemthat
would be ableto handleindependenbbjects,andwould befirst layer of a systemthat
could run applicationsand systemsthat have beendesignedo be distributed.It was
alsothe first attemptby me to designandwrite a full operatingsystem,with all the
complexity that this includes. As far as the project went | think this was a success.

As for the projectitself, for the most part | am happy with progressmade, with

exceptionof the areasmentionedn the lastchapter.Someof thesecould havebeen
avoidedby a little bit more attentionto detail in the designphase,and the whole
project would have beencompletedquicker if anotherlanguagehad been chosen.
Assembler is the correchoicefor the lower level codeandsystemfunctions.But, for

the higher level functions, a 32 bit C should have been used.

I learntfrom this projectseveralthings. The mostimportantthing from an engineering
point of view, is to stopandtakea look at the whole picture everynow andthen, as
getting caughtin the small detail of the project can corrupt the view of the whole
project.For examplewith the semaphoreslThe semaphoreystemwasin the original
ideas,but as eachsystemstartedto fall into place separatelyit did not seemto be
needed.But, when the whole thing was looked at, it was needed.The next point
would be whendesigninga systemdo not ignorethe obvious,andtake sometime to
makesurethe obviousandsimplethings are simple,andthat they are not really very
complexwhenlookedat in detail. And finally, with projecttimings asyou think they
shouldbe,andaddat least50%, becauseavith complexsystems/ou cannotforeseeall
problems, some you wont be able to see until the system is implemented.

Finally, eventhoughthe projecthasnot turnedout a fully asplanned, think that it
was a success and has been a good experience for me.

The first of three distinct areas of t8®©BOSprojectthatarein needof furtherwork,
is to finish the project itself and to tidy spmeof the areaghattherewasnot enough
time of meto finish. This includeswriting the OCS, andto finish testingthe MDSIO
sub-system. Creating a proper semaphore syatelamendinghe codesothatis will
use the semaphordunctions. Also to amendsome of the tablesto try and avoid
bottleneck caused by having all the data for an object on the table.

The next area would be to atlee areasof the COBOSideathathavebeenmentioned
in the technicalbackgroundchapterof this report. Thatis including the writing of a
compilerfor the COPLE languageand building someobjectsand applicationsthat a
distributed.It would alsobe a goodideato makeCOBOSa fully bootableoperating
systemasthis would getrid of somethe problemswith incompatibility, andit will free
the bottom 1 meg.

The finalareawould beto investigatethe areaghathavinga distributedoperatingand
distributed applicationscause,and researchhow to be able to use and interrogate
objectswithout the needof an applicationto drive the query. How do you recover
from a distributed failure? How do you checkpointand recover from a downed
system?How do you keepapplicationsand objectsthe rangeover severalmachines
consistentWhat about truly independeninstancesof objects,as the instancesare
grouped together with the object and the code, make the instances free-staitdéng
referencdo the object. Whataboutmakinginstancesitemsin a setandhavingthe set
have behaviours and attributes in common?

These a just a few of the areas that independent object programming leads to.

The projects milestones,and the distinct areas that the project
breaksdown to.

The planed projects schedule.

What actually happenedwith the project, including the areas of
the project that was not planned. Time details of the delays.

The project breaks down into 11 major milestones, and these are:

Analysis of the System
Working out what was neededfor the projectand writing the intial specification
for the project.

Kernal Design

Doing thedetaileddesignof the systemjncludingwriiting the SDS-3Specification
for it. Working out what the structureof the codewould be, and what language
was to be used.

Loader Design
The design of the loader, and how the machine is to be switched into PMODE.

Implement the Loader
Coding and testing of the code that will lauch the Kernal.

Implement the Kernel
Codingof the Kernel, this includesthe OCS,andthe other sub-systemshat make
up the main part of the project.

Writing the Interim Report

Testing the Loader
Making sure that the loadarorksto specificationandto amendany problemsthat
arise in the testing.

Testing the Kernel
Testingof the Kernel, this includesthe OCS, andthe other sub-systemshat make
up the main part of the project.

Final Systems Test
Runningthe whole systemandthe demonstratiorprogram,to makesurethatit all
works togerther as one complete system.

Writting the Final Report
Producing this report.

These milestones where found when the initial project analgssloneandtheyhave
not been changed thoughout the project.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

write ~

Write

Intrim Report

IS

" Final Report

Code

$y~ Loader 2 S
/§ N
System) Design . Code Test O
Analysis ~/ Kernel ~/ Kernel " System

Start

Finish

Fig 9.1 Simplified CPA for the COBOS project

The Projectplanis basedon the 29 weeksthat whereallottedto startin week1, and
to end in week 30 of the final year.

The project plaris a little acedemiasthis projectis beingwritten by onepersononly
onetaskcanbe doneat anyonetime without casuingconfusion.But, to makethe task
of creatingthe systemmoremanagablet wassplit into tasks,anddeadlinesvhereset
for all these task. See 9.2 the Gantt Chart for the COBOS system.

The tasks for the system, with the estimated durations are listed below:

Task

Analysis of system
Kernel Design

Loader Design
Implement Loader
Implement Kernel
Writing the interim report
Testing the Loader
Testing the Kernel
Final System Testing
Writing the User Guide
Writing the final report

Duration
1 week
2 weeks
1 week
2 weeks
14 weeks
2 weeks
3 days

2 weeks
2 weeks
2 weeks
2 Weeks

The Implement Kernel task of the project plan was split into sub-tasks, which are:

Task

Memory System

Low level task system
Mouse Interrupt code
Keyboard Interrupt Code
Task switcher Interrupt
Descriptor Code
Exception Handler
Mouse Routines
Window routines

Disk Driver and Block Device
MDSIO functions

Duration
3 days

3 days

3 days

1 Day

1 Day

2 Days
3 Days
3 Days
1.5 weeks
1 Week
2 Weeks

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Installer 1 Week

Applications Control 1 Week
Object Control System 2 Weeks
Testing Objects 2 Weeks
Graphics & Icons creation time available

All the abovetimings where guess-timatesising the speedthat | had written other
assembler programs before. Most of the above is based on the fact thaealgsign
phasethe project consistsof just coding and testing. There are no finiancial or
equipment availablity worked into the plan, as the equipment needed is always availble.
If therewasany problemswith the main equipmenthatwas plannedto be usedthen,
backupequipmentwas availablein the university.No moneywasneededo be spent
becuaséhe softwareusedfor the projectwas ownedby me. Also the university had
software that could be used in case of failure of the primary equipment.

The projectdid vary from the inital planasdescribedabove.The aboveplan doesnot
really allow muchroomfor problemsthatoccouredduringthe creationof the project.
Also not all areasof the projecthavebeenfinished. So the following is a list of the
actual progress against the plan.

Task Duration / Reason for Delay
Analysis 1 week - on time

Kernel Design 2 weeks - on time

Loader Design 20/10 - 23/10 - early finish
Implement Loader 23/10 - 30/10

Problem had to change from C to ASM, linking

problems with Borland and TASM/MASM code.
C_FIND_DISK 30/10 - 17/11

Functionnot in the design,neededo find the DOS file

so that linear block position could be found on the disk.

Implement Kernel 17/11 - 25/3
This task was not completed - more details to follow
Testing the Loader 30/10
Tesing the Kernel Kernel not complete
Final System Testing Kernel not complete
Writing the user guide This has been made an appendix of the final report

Writting the final report 25/3 - 21/4
The projectreportmusthavemoreinformationin it that
intially expected, so time extended.

For the sub-taskghat makeup the implementkerneltask, hereis a breakdownof the
work schedules as happened:

Task Duration / reason

Memory system 17/11 - 24/11 - completed early

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Low level task systen 17/11 - 24/11 - completed early

Mouse Interrupt code
Keyboard Interrupt code
Task Switcher Interrupt
Descriptor code
Exception Handler

Mouse Routines
POSTBOX

Windows routines

Disk Driver and Block Device

MDSIO functions

25/11 - 27/11 - completed early

27/11 - completed early

24/11 - completed early

24/11 - completed early

19/12 - 6/1

Late, problems with stack.

2/2 - 6/2 - small delay due to deadlocking
6/2 -7/2

Not in design,problemswhile testingtaskswith
mouse points out a dealock caused by
send_message.

27/11 - 19/12

Stopped without completing, problems with
Windows mapping,mostfunctionswork, out of
time so stopped.

712 - 26/2

Had to redesign parts of the system, had idea.
26/2 - 25/3

Took more time than expected.

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

[Analysys of system

[Design Kernal

Design Loader

Impliment loader

Impliment Kernal

Memory System

Low level task system

Mouse Interrupt Code

Keyboard Interrupt Code

Task Switch Interrupt Code

Descritptor Code

Exception Handler

Mouse Routines

Window Routines

Disk Driver & Block Device

MDSIO Functions

Installer

Object Control System

Testing Objects

Graphics and Icons

COBOS Project Plan

[Test Loader

[Test Kernal

[Full System Test

[Interim Report

[User guide

[Final report

30|07 |14 |21|28| 04|12 |18 25|02 09| 16| 23|30 |06|13]20]27|03|10]17 2403|1027 |24 |30]07]24]|22
09|10 |10 10| 10|11 |12 |12]11|12|12|12| 12|12 |01 |01 |01 |01 |02|02]02]|02|03|03|03|03|03]|04]0a]04
—
—_
—
—
—
—
—
H
H
—
—_
—
—
—
—_
— =
—
—
1112
—
I

BEng (Hons) SWERTS 1996 / 97

BEng/BSc Final Year Project Report

"80386 Technical Reference"
E.Strauss, 198 Brady, ISBN: 0-13-246893-X

"DOS Programmers Reference - 3rd Edition"
Dettman and Johnso@ue ISBN: 0-88022-790-7

"Introduction to Algorithms"
Cormen, Leiserson, Rivad¥jcGraw-Hill, ISBN: 0-262-03141-8

"Microsoft 80386/80486 Programmers Guide"
R.P.Nelson, 199Microsoft PressISBN: 1-55615-343-0

"Microsoft PC/PS2 Video Systems"
R.Wilton, 1987 Microsoft Press|SBN: 1-55615-103-9

"Programming the 80286,80386,80486, and Pentium-based Personal Computers”
B.B.Brey, 1996Prentice Hall ISBN: 0-02-314263-4

"Structured Computer Organisation - Third Edition"
TanenbaumPrentice Hall,ISBN: 0-13-852872-1

"The Indespensable PC Hardware Book"
H-P.Messmer, 19938 ddison-Wesle\i SBN: 0-021-87697-3

"The Theory and Practice of Compiler Writing"
J-P Trembley & P.G. Sorenson, 198%;Graw-Hill, ISBN: 0-7167-8261-8

"Understanding CORBA - The Common Object Request Broker Architecture”
Otte, Patrick, Roy, 199®rentice Hall,ISBN: 0-13-459884-9

"Yordon Systems Method"
Yordon Inc., 1993Prentice Hall ISBN: 0-13-285818-5

[anto 97] "Project log book"

This is the log book thatwaskept during the designandcodeof the COBOSproject,
andit holdssomedesigndetailsfor the loaderandwhy certainchoiceswas made.lt
holds a chronological record of the projects development.

[corm 95] "Introduction to Algorithms"

The sectionpointedto by the text hasa detaileddescriptionof how a queuestructure
works. It also gives in detail hoawqueuewould be implementedAlso this book gives
a good grounding into how most of the data structure types used in the project work.

[otte 90] "Understanding CORBA - The Common Object Request Broker
Architecture”

This book givesa good introductionthe areaof distributedobjects,andin particular
thereasongor the way that COBRA hasbeendesignedThis book is written by some
who really likes COBRA and does not criticise the system at all.

[tane 90] "Structured Computer Organisation - Third Edition"
The sectionpointedto by the text showshow the ideasbehinda stackframeare used

and why. This book also has a good section on the general area dealing with
concurrent systems and context switching.

activate on need Thisis a taskthatwhenit is not beingusedis suspendedand
after it completes the task it has to do, it suspends itself.

bit fat In MS-DOS the File Allocation Table (FAT), is madeup of
pointersto the nextFAT entryin thefile chain,andif the block
is freethe spaceholdsa zeroentry.In a bit fat the FAT is made
up of singlebits that areindexesof the sectorson the disk that
it representsThe bit fat doesnot point to the nextsectorin the
file, so the file system will need to hold that informatiBit. fats
use less space than the MS-DOS type FAT, and can be
extendedasthe MS-DOStype fat hasto havea sizei.e. 16 or
12 bits, which then limits the numberof sectorseachfat can
reference.12 bits is 4096 entries,and for 16 bits is 65536,
which then limits the size of the disk drive or partition.

call frames Is away of creatingspaceon the stacksothata functionthatis
calleddoesnot needto havededicatednemoryassignedWith
concurrentsystems,having dedicatedmemory with functions
that can be called by different applicationsat the sametime
causes problems.

character maps Eachcharacterseeon a screenis madeup of a charactermap
the hasthe position of eachpixel that needsto be displayed.
Note: this is with the exceptionof true type fonts that work
differently, but are not used in COBOS.

class A definition of a type of object, holds all the relevant
information that the objects need.

clusters As described in the bit fat above, MS-DOS has a limitauber
of entriesin its FAT. By using clusters,which is a numberof
sectors,MS-DOS usesthesethe extendthe size of the disks
that it can use.

constructor With an object,whenit is createdthe datait holds mustbe set
to default values.The constructoris run by default when the
object is created.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

context

descriptor

far call

garbage collection

Global Descriptor
Table

global realm

group

idle/halt loop

inheritance

Instances

interrupt

This is a machinestatethat an applicationthat is runningis in.
When switching betweentask, you changethe contextof the
processor.

This is a Intel structurethe tells the processomwhere and of
what type is the memory segment that is to be used.

Far call is redirectionin the programthat also changesthe
memory segmentthat the codeis in. A call pushesthe return
information onto the stack so the progreamfind whereit was
called from.

Memory that is allocatedwhen a task needsit and released
whenthe task hasfinished with it. Leavesgapsin the memory
table that are to small to lnsed,andtheseare"garbage'which

needsto be collectedwith the other small partsof memoryso

they can be used.

This is an Intel table that holds the memory type descriptors,
that the processor uses. See Descriptor.

This is a COBOS realm that is spreadacrossmore than one
computer system. A realm is like a directory in MS-DOS.

This is a logical structurethat allows objectand applicationsin
one realm to referenceobjectsin anotherrealm. Realmsare
ways of separating data and creating security for the data.

Whenthe processoruns out of valid tasksto run, it needsto
wait until a valid task is available. The idle wait, halts to
processountil aninterruptis causedBut, in casean interrupt
thatreturnsbackto the taskhappensthe nextinstructionafter
the halt, jumps back to the halt instruction.

Objects are made up of data and behaviours.Inheritanceis
wherethe behavioursand datatypesusedin the object come
from anobjectthat hasbeendefinedbeforehandandis usedas
a base for a new object.

Objectsaredefinitionsof the type of thingsthatanitem cando,
an instances theitemitself. Soanobjectwill haveoneof many
instances.

Is when the processor"interrupts” the current processing
stream. Normally from a signal from an external source.

interrupt descriptor An Intel table that holds the pointers to the interrupt code.

table

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

linear addressing

load balance

middleware

mutual exclusion

near jump

persistence

pre-emptive

protected mode

round robin

segment

selector

signal and wait

von neumann

The linear addresss the numberof the byte being addressed
from the start of memory.

When running multiple systems,if one systemis being used
morethanthe othersthenthe task running on that systemwill
be runningslower.So the "load" or the tasksbeingrun on any
onesystemis spreadacrosshe rest,so thatthe systemshavea
balanced load.

This a systemthat sits betweenthe applicationlayer and the
operating system.

When only one task at a time is allowed to accessshared
memory or data at a time.

Unlike the far call this doesnot changethe memory segment
that the task is using.

Datathatis permanenuntil it is changed,s persistentMost
files are persistent,but most objects are not as they are

structures that are created by the compiler and don't really exist.

Whenthe contextof a programis switchedby the decisionof
the operatingsystemratherthanwith non pre-emptivesystems
that the task decides when to change the context.

This is thenative modeof the 80x86 processors.usesthe full
rangeand power of the newerprocessorsilt is the modethat
allows for descriptors and segments to be used.

This is the simplestmethod for schedulingtask in a multi-
taskingoperatingsystem.Basicallyit selectsthe next available
task.

Thisis amemoryslicewith a baselinearaddresghat pointsout
the startof the segmentandit alsohasa limit. The segmenis
loaded into a segmentregister,and in addressedrom zero
when is converted by the processor to a linear address.

The points to an entry ithe GDT or IDT, sothedescriptorcan
be found, and there by the segment.

Thesefunctions are used in mutual exclusion and hold and
release the semaphores.

Definedthe basicstructureof serialprocessor®f the type that
the PC uses.

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

A brief descriptionof the IDT, GDT and TSSthat are the core of
the PMODE, and needto be understoodto understandthe way
that the COBOS system works.

For anin-depthlook into protectedmodeand protectednodeprogrammingjt would
be bestto read Microsoft's 80386/80486Programming Guide This will give an
overviewof how PMODE works. This bookis full of errors,but it basicallygivesan
insightto the areawith out beingoverly technical.Thento actuallydo any protected
mode work, either the 80386 TechnicalReferencewhich is betterat the low level
programminganddescribesvhat eachinstructiondoesin detail, or the programming
the 80286,80386,80486 and Pentium-basedPersonal Computers which hasmore
detailson programmingthe devicesin PMODE. Thesewill give a usableinsightinto
the PMODE. It mustbe warnedthatall thesebook containserrors,but errorsthatcan
be got around.

What follows is just a descriptionof the three main structuresof the PMODE, the
TSS,theIDT andthe GDT. It will alsocoverthe entrieson thesetablesand how to
get into PMODE.

The switchinto PMODE is very simple. Thereis a systemregistercalledthe CRO, bit
0 of CROis the PM bit which tellsthe processothatit is in protectednodewhenset.
But, for the systemto run in protectedmodeit needsto know wheretwo system
tablesare.Firstthe IDT (InterruptDescriptorTable)which tells the processomwhere
to find the interrupt code. The other is the GDT (Global Descriptor Table) which
holds the definitions of the memory segments. The following code does this:

Xxor eax, eax

mov ax, GDT

shl eax, 4

mov word ptr ds:[load _gdt], 0800h ; the limit of the gdt

mov dword ptr ds:2[load _gdt], eax ; the linear offset of the gdt

xor eax, eax

mov ax, IDT

shl eax, 4

mov word ptr ds:[load _idt], 0800h ; the limit of the gdt

mov dword ptr ds:2[load _idt], eax ; the linear offset of the gdt

lgdt fword ptr ds:[load _gdt] ;loads the gdt

lidt fword ptr ds:[load _idt] ; load the idt

mov eax, cr0

or eax, 01 ; set the PM bit

mov cr0, eax ; now in PMODE

jmp c_here ; clear the prefetcher
c_here:mov ax, offset g_DOS_tss ; the dummy tss for the task switch

Itr ax

fimpl6 g_cobos_tss,0000 ; jump to initial system TSS

Thereis a smallnearjump to "c_here",all this doesis clearthe processorprefetcher
which will be holding instructionsthat whereloadedin real mode which may cause
problemswhen the processorsstate changesThe two tablesmust be valid or the
systemwill immediately"triple fault" which causesthe machineto resetitself and
reload,whenthe "fimpl6" instructionis run. NOTE: the "fimp16" is a macrothe gets
around a MASM problem, it does not recognise the PMODE far jumps and calls.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

With all PMODE task switches, (this is what the fimp16 will cause),the current
processor state is saved into a TSS. Sdithastruction gives it a "dummy"” TSt
can save the data in it.

| selctor number il ol |
Selector
Limit 15..0
Base 15..0
A PdplD | Type Base 23..16
el Base 31..24 gdb0a | limit 19..16

Generic Descriptor
Format

Global Descriptor
Table

The descriptordefinesa memory segment,and where and of what size it is. The
descriptorshownis a "generic"type. The typefield defineswhat the descriptordoes,
and some of the fields for different typefsdescriptovary. As far assegmentgo, the
two mostimportantfields is the baseand limit. The baseholds the position of the
descriptorin the linearaddresspaceof the PC. With the limit telling the systemhow
big the segments. Also executableeodecanonly befoundin a descriptorof the code

type.

Selectorsare usedto find the descriptoran the GDT, andare how the programmers
locateandreferencememorysegmentsThe selectorhasthreebytesthat are usedby
the systemto locatewhat table the selectorin questionis to useandwhat "privilege
level" that the segmenis to be setat. The"i" bit in fig Al.1, selectseitherLDT or
GDT. (The LDT is the local descriptor table, and is not used, so is not exptere)
The RPL bits are the requested privilege level of the segment. The regebsannot
exceed the level that is set by the DPL bits in the descriptor.

ThelIDT, alsohasdescriptor®on it, but cannotbe referencedtherthanby causingan
interrupt.

The TSSis a complicatedstructure,andit hasspacefor the machinestateand other
things.But, the only field in the TSSthatis of interestis the back_linkfield, which is
thefirst word in the segmentWhatis in this word is selectorthat pointsbackto the
taskthat calledthis tasksTSS. Why this is of importanceis thatif this back_linkis
changedandataskreturnis done(an IRET instruction). Thenthe TSS pointedto by
the back_link field will be loaded. This how COBOS does its task switching.

Protectedmodeis far more complicatedthan this, but this at leastexplainshow the
task switching is done and how memory is segmented.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Speaker
—CLK2—p ouT2
— GATE2» counter 2 I
—CLK1-p
—GATELY counter 1 OUTL to chan0 DMA chip
for DRAM refresh
—CLKO—»
—GATEO» counter 0 —I
OUTO to IR0
8253/8254 PIT Programmble
Interrupt
Controller

The PIT uses four ports for programming:

port 40h The data port for counter O
port 41h The data port for counter 1
port 42h The data port for counter 2
port 43h The control port

Thedataport areusedto read/loadhe numberof clock ticks thatthe counteris to do
beforethe PIT actionsits command.The deciveis controlledvia the control port and
the format of the control byte is:

Port 43h PIT status byte

00 = counter 0 . . > .| 0-Normal Hex

01 =counter1 |’

10 = counter 2 ,' \\ _1 ~BCb
00 = Counter latching |' ‘\ Mode
01 = Read/Load only LSB | olny 000 - COBOS uses
10 = Read/Load only MSB and 010 - DOS uses
11 = Read/Load LSB/MSB are of interest

The two modes of interst the PIT aremode000bthatis usedby COBOS,andwhen
the PIT getsa count,it countsdown to zero, causesan interrupt, then doesnothing
until the next countis sent.Mode 010b is the one that MS-DOS uses,and the PIT
countsdown to zero, causesan interrupt, then startscountingdown againusing the
samecountvalue. The PIT runsat 1193181hz, so to get the interruptto occur at
1/40th of a secondthe countneedsto be setat: 29829decor 7485h. The follwing
code showshow the PIT is programmedin COBOS mode (000) for 1/40th of a

second.
mov al, 30h

out 43h, al ; mode O - LSB & MSB
mov al, 85h ; write the Low byte first
out 40h, al

mov al, 78h ; write high byte second
out 40h, al

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

- - IRQ8- W
- - |R89- > From the processor
- -IRQ10- »
- -IRQ11-» SLAVE
- -IRQ12- » 8259A r—
- -IRQ13- p PIC NTA« The slave uses port AOh and
- -IRQ14- » INT] | Alh for its commands
- IRQIS M asocast casz -
y 4
- _|RQO- p| CASOCAS1CAS2 o
- - IRQ1- p I_The Master uses port 20h
—» MASTER | and 21h for its commands
- -IRQ3- b gr50A —
CRos ol PC
o] INTA[<
T :ggg : INT » To the processor

MS-DOS sets up the two PICS so the masterusesinterrupts 08h - OFh, these
interrupts are neededby the processorin protectedmode for the exceptions,this
includesthe mostimportantexception(int 0Dh) the generalprotectionfault, which is
causedmy most problemsthat a task will normally cause.So, the PIC needsto be
moved so that it uses interrupts that Intel have not reserved (int 21h onwards).

Dueto areasorto do with theinternalsof the PIC, it canonly haveits first interrupt
numberstartingon an8 boundaryln COBOSI setthe PIC to startat int 20h, asthis
is not usedbut is reserved.The methodof programmingthe PIC is quite involved in
possible ways that it can be done, but here is how it is done in the COBOS system:

cli ; turn off the interrupts
set_PIC_mast:
mov al, 11h ; ICW1(cascade,ICW4,Edge triggered,interval of 8
out PIC_mast_a0, al ; send ICW1
mov al, 20h ; ICW2(start interrupt number - int 21h)
out PIC_mast_al, al
mov al, 04h ; ICW3 (device IR2 is the slave)
out PIC_mast_al, al
mov al, 01h ; ICW4 (8086/8088 mode-EOI=0,must acknowledge)
out PIC_mast_al, al

set_PIC_slave:

mov al, 11h ; ICW1

out PIC_slave_a0, al

mov al, 28h ; ICW2 (next 8 interrupts)

out PIC_slave_al, al

mov al, 02h ; ICW3 (slave on IR2 of the master)
out PIC_slave_al, al

mov al, 01h ; ICW4

out PIC_slave_al, al

See thendispensable PC Hardware Boéd more details.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

The only reason this data has been includehis reportbecauset is sohardto come
by. The detailsof the first 3 mousebyteswere provided by M.Medvec. The fourth
byte that only occurs on a thrbattonmousewasgainedby simpletrial anderrorand
was a pain to get.

The PS/2 mouse is a differdand of mouse andall the hardwarebookshavedetailed
descriptionsof this type of mouseworks, eventhoughtyou will only find this type of
mouseon very old PS/2(andcompatible)machinesSo only a descriptionof how the
serialmouseworks is given here.This expectsthe mouseto havebeensetup by the
mousedriverin MS-DOS,you needto programthe serialport directly to do this, and
this is a pain so is not described here.

Whenthe mouseis movedor the mousebutton is pressedjt sendsa setof mouse
bytes.Eachof which aresignalledby aninterrupton IRQ3 or IRQ4. Thesearereada
follows:

mov dx, 02f8h
in al, dx

The format for these bytes are as follows:

Byte 1 Byte 2 Byte 3 Byte 4
Llads x [y | [laxddxq [[oy[y[y[y]y]y] [o[Molo[od oo
Bits 6 & 7 of the
x offset '
- . - . I L- Leﬁ Mouse Button
Bits6&7ofthe v BISO-Sotihe o B0 i,%ffg:t : 1 - Wil Moves Burton

y offset '

Byte 4 is only for 3 buttonmice, so but driversthat handleboth needto look out for
this byte asit doescauseproblems.As you canseethe mousemovemeniwffset byte
hasto be built from morethanonebyte, alsothis offsetis 2'scomplemenso oncethe
byte is built it can just be added to the mouse position.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

It is importantthat beforerunning any of the COBOS programs that SMARTDRV
and EMM386 are removedfrom AUTOEXEC.BAT and CONFIG.SYS, as these
functions interfere with the COBOS programs.

The COBOS systemcomespackagedn one disk with a file calledinstall.bat This
BAT file will handlethe whole of the installationof the COBOSsystem.Theremust
be around5 megabyte®f harddisk spaceon the primary harddrive (the c: drive), so
that COBOS can create its DSK file.

To install COBOS, place OPERATING SYSTEM DISK, in the floppy disk drive:

Theinstall batfile will createa directorycalledc:\cobos,andit will copy all the code
that COBOS needs into this directory.

To run COBOS,
type: c:\cobos\cobos

To exit COBOS, in this version, hit the <esc> key, which is a quick exit.

To removeCOBOSfrom your systemthereis a simple BAT file thatis includedwith
the installed system that needs to be run. So, to uninstall the system type:

c:\cobos\remove.bat

This will clearall the codefrom the system,aswell as removingthe DSK file, and
returning this space back to the system.

At the momentall codethatis written for the COBOSsystem mustbe compliedinto
the program,asthe compilerandsystemmanagehasnot beenwritten. The codewill
needto bein a 32 segmentandreference32 datasegmentsso thatthe compileruses
the correct overrides when it compiles the code.

Seethe file comctrl.asmon the sourcedisk, asthis is a self contained
task that runs in COBOS.

add_hot_spot

block _request
close_MDSIO_object
create_ MDSIO_object
create_realm
delete_realm
display_text
extend_MDSIO_object
open_MDSIO_object
read_MDSIO_block
read_message
send_message
write_ MDSIO_block

C-1

C-3
C-4

C-6
C-7

C-9

C-10
C-11
C-12
C-13

Description

This function will add an hotspot to the hot spot table. If will look for a free space
then just add the entry. The status parameter sets up what type of hot spot is to be
created, and the format of the byte is as follows:

bit 7 bit 0

clear redraw active

expand

move

message

user

screen

Hot Spot status byte

If the message bit is 0, then a mouse click in the window or icon will cause the
following packet to be sent. Else, the exact message a given will be sent.

1 2 4 6 8 10

Mouse

L] 00| oumone

X position

y position filler |

Mouse Return Message Format

The screen bit in the status byte tells the system if the hot spot is a icon or a virtual
window.

Parameters

size name usage

word owner of the screen The task that owns the screen

word screen top x the x position on the real screen of the hot spot

word screen top y the y position of the hot spot on the real screen

word screen bottom x the end x position of the hot spot

word screen bottom y the end y position

word max X pixels the maximum x size of the hot spot, this may be
bigger than the real screen.

word max y lines the maximum y size of the hot spot, this may be
bigger than the real screen

word relative start pixel the x offset in the hot spot, where the displaying
is to start

word relative start line the y offset in the hot spot, where the screen
display is to start

word target task the target of the screens messages

word message length if the task is to send a message, the

length

fword seg:offset - messagehe location of the message

fword seg:offset - graphic the location of the graphic or windows space

word status byte the details of the hot spot type

Returns

size usage

eax if the upper word is 0000 then ax = screen number

else eax holds the error code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This function will schedulea block requesto the devicethatis specified.It will add
therequesto the queueof the device.lt doesnot returntheresultof the transferbut
theresultof schedulinghe requestThe buffer is the source/targetf the transfer,and
should not be amendedo the devicedriver sendsthe messagen the result of the
transfer. The format of the completion message is:

7 1

03"

Device
Number

request
size

completed

) Transfer Result
size

Block Device Return Message Format

Parameters
size name usage
word Destination device the device number for the transfer

word Command what the transfer is to be - blk_read or blk_write
dword Starting block the first block number to be transferred

word Transfer size the number of blocks to be transferred

dword Buffer offset the offset of the buffer within the buffer segment
word Buffer selector the buffer segment

word filler just so a 32bit register push can be used
Returns

size usage

EAX Result of the schedule.

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Description

This function willclosean MDSIO objectthathadbeenpreviouslyopenedoy a call to
open_MDSIO_objeciThe only parametethatis neededs the MDSIO_handlethatis
returnedfrom the opencall. The only failure that can be causedby this function is
whenataskthatis not the ownertriesto closeanobject. The only exceptionto this is
a task with the "system" bit set, which allows that task to override this check.

Parameter

size name usage

word MDSIO_handle the handle of the object to be closed.
Returns

register usage

eax result of the call - null or task not owner

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This function will create an MDSIO object. It takibe realmandnameasparameters,
but it checksto seeif the calling task haspermissionsand that the object doesnot
alreadyexist. This function doesnot leavethe objectthat hasjust beencreatedopen.
So, ifthe objectis to beusedit will needto be openedalsothis opensthefile with no
blocks in it. So before any writes to the object are made, a call to
"extend_MDSIO_object"has to be done. The permissionbyte defines the how
applications can access the object just created.

unsed | lobal | rou | realm |
| 9 group 00 - no access

01 - no write, read ok
10 - write, no read
11 - read and write

Permissions byte format

Parameter
size name usage
fword MDSIO name far pointer to a 32byte buffer that holds
the name of the MDSIO object to be
opened.
fword MDSIO realm name far pointer to a 32 byte buffer that holds
the name of the MDSIO object to be
opened.
word requested permissions the low byte is the permissions
byte
word requested type types 01 - flat data file,
02 - application object,
03 - "object" object
Returns
register usage
eax result of the call - null or task not owner

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This function will createa Realm.It will also createthe onodefor the realmsown
table. The Realmtablewill be amendedo addthe realmsrecord.If the realmtableis
full then this function will extend the realm table. All extensitmthe realmwill beon
the samedevicethat it hasbeencreatedon. But, the objectscanbe setup on other
devicesthe defaultin the samedeviceasthe realm.Note, the group nameis logical
and can be anything.

Parameters
size name usage
fword Realm_name far pointer to a 32 byte buffer with the realms

name

fword Group_name far pointer to a 32 byte buffer with the group
name

word Device the target device for the realm

word Permissions the permissions byte, top byte is 0000

Returns

register usage

eax error-code

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Description

This function will deletea Realm.It will also deletethe onodefor the realmsown
table. The Realmtable will be amendedio removethe realmsrecord. It will only
remove the realm if the is empty.

Parameters:

size name usage

fword Realm_name 32 byte buffer with the name of the realm
Returns

register usage

eax error-code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This functionwill displaythe charactesstring on the screenat the text locationthatis
passedn to the function. It will checkto seeif the text runs off the end of the
window, andwill end.If the screendoesnot existit will ignorethe call. Thetextis in
COBOS format, and the first byte of the message is the size of the text to be displayed.

Parameters

size name usage

word screen_number the number of the screen to be written to
word colour two bytes: foreground colour - background
colour

word X_position the start x position in characters

word y_position the start y position in character lines
pword text position far pointer to the buffer that holds the text.
Returns

register usage

<none>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

The function willwrite the specifiedbuffer to a newblock addedto the endof thefile.
It will in necessarily extend the onode of the file if necessary.

Parameters:

size name usage
fword MDSIO output buffer

word MDSIO handle number

Returns:

register usage

eax the result of the call

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This function will open the requested MDSIO object and returiviib&10 handlefor
the object. The permissions for the object will be tested. éidpthe specifiedpart of
the objectcanbe openedby any onecall. Multiple calls canbe usedto opendifferent
partsof the sameobject.It may be notedthat different partsof the sameobject my
have different permissionsso calls to different parts of the sameobject may have
different results. If an attempd opena partof an MDSIO objectthatis of atypethat
doesnot havetherequestegartthe call will fail. Also if anattemptto openanobject
of atype thatshouldhavea specificpartby that partdoesnot exist, thenit cannotbe
opened so it cab be extended.

Parameters:

size name usage

fword MDSIO name 32byte buffer
fword MDSIO realm name 32byte buffer
word requested access

word requested part

Returns:

register usage

eax the MDSIO entry number (ax only)

ebx the result of the call

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This functionwill readthe block specifiedby the accessnode.the threeaccessnodes
are"next", "prev" and"absolute".Next readsthe nextblock sequentiallyin the object.
Prevreadsthe block that precedeghe currentblock. Absoluteblock readsthe block
number that is specified the "absolute_block_numbeparameterlt mustbe pointed
out that the block number is relative to the start of the object.

Parameters

size name usage

fword MDSIO output buffer the buffer to be read into

word MDSIO handle number the MDSIO handle

word MDSIO access mode three types: oa_next - forward mode
oa_prev - backward mode
oa_abso - absolute mode

dword Absolute block number the block number to be read, only used

when the access mode is "absolute”.

Returns:

register usage

eax the result of the call

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Description

This procedurewill reada messagérom the currenttasksmessagejueue It will read
the top message and then remove it. If the gisseimptythe functionreturnsanerror
code.This function doesnot checkthat top boundaryof the buffer to seeof thereis
space.

Parameter

size name usage

dword destination offset the start byte of the buffer in the segment
word destination selector the segments selector

word filler 32 bit filler for the segment register push
Returns:

register usage

eax error code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

This subroutinewill senda messagéeo the taskthatis pointedto by the tasknumber
specified.If the destinatiormessagejueueis full, it will returnanerror messagerhis
function does not check that top boundary of the buffer to see of there is space.

Parameter

size name usage

word destination task number the task to send the message to

word message size the size of the message to send

dword destination offset the start byte of the buffer in the segment
word destination selector the segments selector

word filler 32 bit filler for the segment register push
Returns:

register usage

eax error code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Description

The function will right the specified buffer to the block pointedsthe currentblock.
The buffer 512 byte long.

Parameters

size name usage

fword MDSIO output buffer the far location of the buffer to write
word MDSIO handle number the MDSIO handle of the MDSIO object
Returns

register usage

eax the result of the call

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Statement Of Purpose

System: Concurrent Object Based Operating System (COBOS)
Designer: P.Antoine

General Description:

The purpose of this system is to be a basis for the object! based "hyper" language, COPLE.
The system will both hold and control the objects and the applications that are created by the
programming language. The system will also control the computer hardware, and manage
the data structures that will be held on disk, and the system will also handle the interactions
with the user.

Responsibilities:

1. Load/closing the applications.

2. Creation and Maintenance of the data file structures.
3. Interfacing with the computer hardware.

4, Controlling the user inputs.

5. Handling inter-process communications.

6. Controlling the data sharing (mutual exclusion)

Specific Exclusions:

1. Compiling the COPLE programs, and creating the objects code. These functions are
to be carried out by an application that will run under this operating system.

1 The definition of an object fdhis systemis, a self containeddatastructurethatholdsboththe data
andthe codethat otherprocesseseedto amendthem. The dataheld within an objectis not directly
available to external processes, but must be accesed thagghrice (the objects code).

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

EXTERNAL | ,H;arglvgar‘e interupts EXCEPTION
DEVICES
F
’éxceptions
Control éig-neils’)
+t— object calls
Task Data
J Software Object Data
. Generated
Interrupts
APPLICATION
INTERRUPTS system calls
Terminator Definitions
Name: External Devices
Meaning: This terminator is the hardwareinterrupt system of the computer, which is

triggered by the devices when they want to talk to the software
Instances: 1

Name: Exception

Meaning: These are the software exceptions that are caused by bad code
Instances: 17

Identifier: Ex.number - as defined by INTEL

Name: Interrupts

Meaning: Software generated interrupts, caused by the instruction INT n.
Instances: 238

Identifier: INT17 - INT255

Name: Application

meaning: Application that is being controlled by the system

Instances: variable

identifier: App-number

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

‘Hardware Interrupts g%}};‘l’; System Calls
-

,,,,,,,,,,,

Object

System Control System

\1
Manager \

Device -
Interupts

Task Data

Object Data

The systemananageiprocessgcontrolsthe way the systeminterfaceswith the hardware This
includesfault and devicehandling.Loadingandclosingof the applicationswill be controlled
by this processes. This part of the system is very machine specific.

This processwill control the way applicationsaccessthe objects, it will also createthe
instance space that the objectsserviceswill usewhen accessingan instanceof the object.
This system uses the system manager for data requests, so is less machine specific.

2 vinstance space", is created when an application needs to access an object, and is a kind of buffer.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

MDSIO Request

Allocate
Memory

Close
Application

Close Request

1.6 Malloc Table

Hof Spot Request

Amend
Hot Spots

Task Data *
Memory Request

13

Task List

Hot Spot Table \\
\'Control \$

) Ha{rd\}ve{reilntierilptis o Y System
- PR
- System Data

Load
Application

Load Request

Device Queue

Action
MDSIO
Requests

Control Signals
1.2

Device Data

Task Data *
MDSIO Request

A A T A

NN

Memory Request

, Memory Request

add buffer Rgst

Object Data*

Find Request

Find
Instance

Memory Request Load
MDSIO Request .
L

2.6

Object
, MDSIO Requests
+ 2.2

Load
Object Data*

Request

Object Table

Memory Request

L
Close Object
MDSIO Request b

open object

delete
Instance

new
Instance

MDSIO Request)

remove Instance

, MDSIO Request

b

2.5

2.4

Add Instance

NIRRT N

!
SN\

BEng (Hons) SWERTS 1996 / 97

BEng/BSc Final Year Project Report

Hardware Interupt*

******* '

* _Timer Int
_ _ Exceptions
T * Handle .
"~ - - ¥Exceptions,
v112.° -
PG

Close Request -

System Data*
Hot Spot Table

Device Queue

Control Signals

Task List

\ -

o Control .
- Block
_F Device
T 118
' b

Task Data

Start

System Data* A S
. Control’ . Signal
ffffffffff + Hardware
_ SoftwareInterupt — nterupts
. B ' S 117 Device Data
R + Control L 5 .
"TSOftwareN/f .
. Interupts .
t 114 .

MDSIO delete realm

MDSIO write request

Device Queue

4 Start Signal

Device Table

s T T T kR

MDSIO create realm

MDSIO Delete request

Realm Table

Open MDSIO Table

MDSIO close request

MDSIO extend request

** READ / CONTRACT have external MDSIO requests **

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

[Accesstock] [Owner]

Object_Source T T
F
J—{Access_Record RarnvnsiERNY

(service_code) (Object_pata)| (current_Block

(service Je—{Object Je—x MDSIO Object TN
F

(Application — - +
(MDsio_Name !],, L (Mpsio pate

] (MDSIO_Permission | (wosio_size)
) (MDsio_Type)

[AppﬁSource] [Appicode
pp_Data =
3
|1—[Rea|m]—D[Group]

[Connections] [Realmfname

(Dnjse T\ Objm@ [Default,va#ie) (size)
T.
(object_Name) (Parameter*]—D{TYDG)
[

[Application number*] [Messaﬁe*] .
rS
&@&m\\\\\“ Loaded_Object]—P'P[Loadedfservice]—P[Service7Code]

(Messa -% send] (system (?”) (instance_space }——{_Attribute)
I I

[Instance_Number]

]_P[Realm *]

[ObjectﬁOwner]

Hot_Spot_Type
F

(system) (Application_Number*
rs

[Realmewner

[HotﬁSpot HOWner]
Y -~

(Top_Left) (Bottom_Right)

[Taskicode

Task_Data_Space

[Message* H Message_data]

[AIIocationfSize] [AllocationiBase]
R e \\)—+¥{Device Request) i

] [RequestﬁBuffer]

Malloc_Entry

[RequestﬁType

[StarLBIock [DeviceﬁNumber]

(RavEa\tabi \\)

7

Device_Buffer Device

[UseLTBSk]—’[Applicatioanumber}

[DeviceﬁParameters] [DeviceiHandIer]

** ltems marked with an ' * * appear more than once on the diagram **

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

1.1.1 Switch Task

if SYSTEM_DATA.current_task = null or is the only task
then
exit
else
for x = all tasks in TASK_LIST
if TASK_LIST.task state <> suspended
then
SYSTEM_DATA.current_task = TASK LIST[x].application_number
Do hardware switch
exit
fi
fi

1.1.2 Handle Exceptions

On event EXCEPTION.number
if EXCEPTION.error_code = true
then
display error_code
fi

if EXCEPTION <> "stack error"
then
display failing stack top
display system state
else
display system state
fi

if EXECPTION.type = FATAL

then
call close_task[SYSTEM_DATA.current_task]
call switch_task

fi

1.1.3 Report Error

Display error code
Display error type

if caused by task
then

pass error_code to TASK_DATA[SYSTEM_DATA.current_task]
fi

1.1.4 Control Software Interrupts

On SOFTWARE_INTERRUPT event
if SOFTWARE_INTERRUPT is not valid

then
Call report_error
else
if SOFTWARE_INTERRUPT = SWAP_TASK
then
Call SWITCH_TASK
else

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Call <interrupt handler>
fi
fi

1.1.5 Check Mouse

calculate new mouse position
display mouse on screen

if mouse button has been pressed
then
for all HOT_SPOTS in HOT_SPOT_LIST
if (new_mouse_position >= HOT_SPOT.top_left) and
(new_mouse_position <= HOT_SPOT.bottom_right)

then
if HOT_SPOT.hot_spot_type = system_call
then
action system_call
else

pass message to message_send.application_number
fi
fi
fi

1.1.6 Check Keyboard

if SYSTEM_DATA.user_task = null
then
exit
else
pass keypress to SYSTEM_DATA.user_task
fi

1.1.7 Control Hardware Interrupts
On HARDWARE_INTERRUPT event

if event not generated by Hardware
then
Call report_error
else
CASE(HARDWARE_INTERRUPT)

mouse: Call check_mouse
keyboard: Call check_keyboard
block_device: Generate block_device event
vaild_hardware: Call <device_handler>
default: Call report_error

fi

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

1.1.8 Control Block Device

b b
[Device_queue_empty]

Device_event

Produce Error .
Start_Signal

Generate Control Signals

+ w £

[Device_active] Start_signal

Device_event

. Yes
Action transfer

b

no M [Transfer corlnplete?]

Generate Control Signals

Yes
Remove transfer from Queue

[Queue Empty?]

** “Action_transfer" means depending on the MDISO request copy buffer to device or from device **

1.2.1 Delete Realm

if Realm.Realm_name = exists
then

add REALM to open_MDSIO_TABLE with update lock
wait(REALM_TABLE)

if REALM_DIRECTORY for realm not empty
then
produce error
else
remove from REALM_TABLE
fi

signal (REALM_TABLE)
remove REALM from MDSIO_TABLE
fi
1.2.2 Create Realm

if REALM.realm_name does not exist in REALM_TABLE

then
add REALM to open_MDSIO_TABLE with update lock
wait(REALM_TABLE)
add realm_name to table
signal (REALM_TABLE)
remove REALM from MDSIO_TABLE
fi

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

1.2.3 Check Permissions
if REALM in MDSIO_Table wait until free

if permission of request < permission of REALM_TABLE
then
produce error
else
search REALM_DIRECTORY for request
if found and permission of request >= permission of item

then
search OPEN_MDSIO_TABLE
if open and access lock = OK
then
return MDSIO_Obiject
else
produce error
else
produce error
fi

fi
1.2.4 Delete MDSIO Object
add REALM to MDSIO_Table with update lock

if Call Check_perrmission ok
then

delete MDSIO_Object
fi

remove REALM from MDSIO_Table
1.25 Open MDSIO Object

if Call Check_permisssion is ok
then
add Access_Record to OPEN_MDSIO_TABLE

if MDSIO_Obiject is new
then
add REALM to MDSIO_Table with update lock
add MDSIO_Obiject to Directory
remove REALM from MDSIO_Table
fi
fi

1.2.6 Close MDSIO Object

search OPEN_MDSIO_TABLE for requested item
if found
then
remove Access_Record from OPEN_MDSIO_TABLE
fi

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

1.2.7 Extend MDSIO Obiject

check OPEN_MDSIO_TABLE
if found and Access_record.access_lock allows update
then

wait (FAT_SEM) * will need the devices free space table *
call action_block_request(read MDSIO_Object index)

x = current_block.next_block
current_block.next_block = new_block

if x <> last_block marker
then

next_block.prev_block = new_block
fi

new_block. next_block = x
new_block.prev_block = current_block

current_block = new_block
call Action_Block Request(write write MDSIO_Obiject index)

Signal (FAT_SEM) * release the free space table *
fi

1.2.8 Contract MDSIO Object

check OPEN_MDSIO_TABLE
if found and Access_record.access_lock allows update
then
call action_block_request(read MDSIO_Object index)

x = current_block.next_block
y = current_block.prev_block

if x <> last_block marker
then

x.prev_block =y
fi

if y <> first_block marker
then

y.prev_block = x
fi

call Action_Block Request(write write MDSIO_Obiject index)

wait(FAT_SEM)* will need the free space table *

update the free space table

Signal(FAT_SEM) * realase the free space table *
fi

1.2.9 Read MDSIO Block
check OPEN_MDSIO_TABLE

if found and access_record allows read
then

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

call action_block_request(current block to MDSIO_Request.buffer)
fi

1.2.10 Write MDSIO Block
check OPEN_MDSIO_TABLE
if found and access_record allows update
then
call action_block_request(write MDSIO_Request.buffer to current block)
fi
1.2.11 Access Block Request

add request to DEVICE_QUEUE
send start_signal to DEVICE_TABLE.<handler>
1.3 Amend Hot Spots

If Hot_Spot_request.type = remove

then
if Hot_Spot_Request.number in Hot_Spot_Table and
caller = owner or system
then
remove Hot_Spot
fi
else

add Hot_Spot_Request to Hot_Spot_Table
return Hot_spot entry number
fi
1.4 Close Application
set TASK _DATA.task_state = suspended

for all Object_Buffers owned by application
Call Remove_Object_Buffer

for all hot_spots owned by application
Call amend_hot_spot (remove)

for all MDSIO_objects owned by application
Call Close_MDSIO_Obiject

for all Memory allocations owned by application
Call allocate_memory (remove)

delete task entry from task list
delete Task Data

if task is user_task

then

user_task = null

if task is current task

then
if any other tasks exist
then
current_task is next task
else

close system

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

15

1.6

21

fi

signal switch_task
fi

Load Application
open MDSIO_Obiject that hold the application

add task _data entry

task data.task data_space = call allocate_memory(add, size app_data size)
call read_MDSIO_object (app_data to memory allocation)

task data.task _code = call allocate_memory(add, size app_code size)
call read_MDSIO_object (app_code to memory allocation)

add task_list entry
if current_task = null
then
current_task = new task
fi
Allocate Memory

if malloc_request = remove

then
remove entry
if entry is consecutive to any other entries
then
join entries
fi
else
if there is free memory
then
allocate space
fi
fi
Find Object
Search Object table
if found
then
if permissions of caller >= object
then
increment connections for object entry
return object entry
else

return error
fi
else
call load_object
fi

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

2.2 Load Object

call open_MDSIO_object
if opened ok
then
create Object_table_entry
create Object_Data_entry
call memory_allocation to create allocations for service definition list,
service code, data buffers.
read MDSIO_Object code to code allocations, service definitions to
allocation.
read first block in object block buffer
fi

2.3 Close Object

if object in object table
then
decrement connections
if connections =0
then
free memory allocations
call close_ MDSIO_object
fi
fi

2.4 New Instance

read_MDSIO_Object (object index to object buffer)
if there is an existing block where the new instance fits
then
read_MDSIO_Object (block_number to object buffer)
amend object_buffer from instance_space for new entry
write_ MDSIO_OBJECT(from object buffer to block_number)
else
amend object_buffer from instance_space for new object
extend_MDSIO_Object(at object end)
write_ MDSIO_Obiject (from object buffer to new block)
fi

2.5 Delete Instance

read_MDSIO_object (object index to object buffer)
amend index
write_ MDSIO_object(index_block)

if instance last instance in block
then
contract_ MDSIO_object(block_number)
else
read_MDSIO_object(block_number)
amend object_buffer
write_ MDSIO_object(block_number)
fi

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

2.6

2.7

2.8

Find Instance

read_MDSIO_object(object_index to object buffer)

search index for item

if found

then
read_MDSIO_object(block_number)
copy instance to instance_space
set instance number

fi

Add Object Buffer

if object loaded and caller owns instance space
then

add instance space to object data
fi

Remove Object Buffer
if object loaded and caller owns instance space
then

remove instance space from object data
fi

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Data Structure: Device_Table

Definition: This structure holds the details of the block devices that the system knows
about. The <device_parameters> is a sub-structure that will hold the device
specific details and as each device will have different parameters, it cannot
be specified here. The <device_handler> is also device specific.

Entries: one per device
Key: <device_number>
Structure: Device := <device_number> <Device_handler> <device_parameters>

<device_buffer>

Data Structure: Device_Queue

Definition: This structure holds the request to the block devices that has been sent by
the MDSIO processes. This structure is a list of requests in the order that
they have added to the queue. These request also hold the state of the
request, i.e. waiting, started, or finished.

Entries: one per request

Key: by device by entry order

Structure: Device_Request := <device_number> <request_state> <request_type>
<request_size> <start_block> <request_size>
<request_buffer>

Data Structure: Malloc_Table

Definition: This structure holds the allocations of the systems memory, and what tasks

have requested what allocations. The <owner> field can be either an
application or the system itself. The base is where the allocation starts in the

system.

Key: by owner by entry order

Structure: Malloc_Entry := <owner> <allocation_base> <allocation_size>
Owner = ['system' | <application_number>]

Data Structure: Task_List

Definition: This structure hold the tasks that have been loaded into the system, and in
which order the tasks are to be run in.

Key: by entry order

Structure: Task_list ;= { <task_data> }

Data Structure: Task Data

Definition: This structure holds the information that the system needs for each task.

Key: by application_number

Structure: Task Data := <application_number> <task_state> <task code>

<task data_space> <message queue>
message_queue := { <messege> }

message := <message_size> <message_data>
Data Structure: Hot Spot Table
Definition: This structure holds the screen address of any screen "furniture” that is used

on it. This could include icons, windows, system buttons, etc.. It hold the
"hot" area of the screen that the piece of screen furniture is active. The
<owner> is defined above.

Key: by entry order

Structure: Hot_Spot := <action> <owner> <position>
Action := [<message_send> | <system_call>]
Position ;= <top_left> <bottom_right>
top_left := <x_cordinate> <y_cordinate>
bottom_right := same as top_left

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Data Structure: Object_Data

Definition: This structure holds the access information that applications need to access
the services and instances of the objects that have been opened. This also
holds the parameter definitions for the services that have been loaded.

Key: by entry order

Structure: Loaded_Object :=object table_entry> {<instance_space>}
{<Loaded_service>}
instance_space := <object_owner> <instance_number> <attrebute>
object_owner :=<application_number>
loaded_service := <service_code> <parameter>

parameter <default_value> <size> <type>
Data Structure: Object_Table
Definition: The structure will hold the information on the objects that have been opened

and loaded to the system, and will keep track of the number of applications
that have connected to each object.
Key: by entry order by object name
Structure: Object_Table_entry:=<object_name> <connections> <object_buffer>
<realm_name> <loaded_object>

Data Structure: Realm_Table

Definition: The structure is the "root" structure for the data stored on disk, its not
modelled as part of the MDSIO system, as logically its not, but in the real
system it will be. It holds the permissions and the group that the realm

belongs to.
Key: by Realm_name
Structure: Realm := <realm_name> <realm_directory> <device_number>
<permissions> <group>
Permissions := ** standard unix a-like permissions **
Data Structure: Realm_Directory
Definition: This structure is similar to a directory, except it is flat, and there are not

realms within realms. this again in logically not part of the disk system, by in
reality it is. This structure holds the data structures that are part of the
MDSIO. <parameter> is as defined earlier.
Key: by MDSIO_Name
Structure: MDSIO_Object := <MDSIO_Name> <MDSIO_permissions> <MDSIO_type>
<MDSIO_Size> <MDSIO_date> <Device_number>
[<object> | <data> | <application>]

Object := <object_source> <object_data> {<service>}
Service := { <service_code> <service_definition> }
Service_defintion := {parameter}
Application := <app_code> <app_data> <app_source>

Data Structure: Open_MDSIO_Table

Definition: This table holds the access records for the MDSIO objects that have been
opened.

Key: by entry

Structure: Access_Record := <owner> <access_lock> <current_block>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

delete realm

create realm

open mdsio object
delete mdsio object
close mdsio object
extend mdsio object

contract mdsio object

read mdsio block
write mdsio block
load application
close application
amend hot spot
check permissions
switch task
handle exceptions
check mouse
check keyboard
block_request
allocate memory
send message
read message
open object
close object

find instance
new instance
delete instance
draw_mouse
clear_mouse
display

E-9

E-10
E-11
E-12
E-13
E-14
E-15
E-16
E-17
E-18
E-19
E-20
E-21
E-22
E-23
E-24
E-25
E-26
E-27
E-28
E-29
E-33
E-34
E-35
E-36
E-37
E-38
E-39

This programis an operatingsystemthat will control a PC. The programwill have severalentry
points,somethatare calledby "applications"(which are programdoadedby the system).t will also
control the data file system, and handle all the system interfaces and hardware.

The entry points for the system are as follows:
Delete_ Realm Create_Realm Open_MDSIO_Object

Close_MDSIO_Object Extend_MDSIO_Object Contract MDSIO_Object
Read_MDSIO_Block Write_MDSIO_Block Seek_MDSIO_Block

Close_Application Load_Application Amend_Hot_Spot
Add_Object_Buffer Remove_Object_Buffer Open_Object
Close_Object Find_Instance New_instance
Delete_Instance Switch_Task * Check _Keyboard *
Check Mouse * Hardware_Interrupt * Software_Interrupt *

Exceptions *
Note: entry points marked "*' can not be directly called, but are called by the hardware.

The system will have three types of data structures, thdildata standardlat file, the application,a
file with two strands, the source code and the object eudieh areaccessethoughtthe samename.
The third type is the object, this hasthreestrandsthe sourcefile, the servicecode,andfinally the
instances of the object.

In the design the functiongait andsignal are used, thesrenot real functionsbut arethe following
assembler code:

Wait: bts system_semaphore, #sem_number
jnc wait
and signal:
signal btr system_semaphore, #sem_number

As allocate_memoryeturnsa selector:table_entry numbeair, all systemreferencesshould hold
boththis pair sothatthetalbe entry numbezanbeusedto freethe entry,andthe selectorfor access
to the memory space.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

COBOS

PMODE switch Kernel DOS return
Interrupts System tasks
Device M
Handler ouse
Task
Keyboard .
4 Switcher
Video Device ComTand
Task Driver Control

PMODE_switch

Kernel

DOS Return
Interrupts
Keyboard
Mouse

Device Handler
Task Switcher
Video Task
Post Box
Device Driver

Command + Control

This changes the mode of the processor, and sets up the structures that are
needed.

The core of the operating system

This returns the PC to real mode, as MS-DOS likes it.
The Interrupt handling system, including the exceptions
Handles the keypress on the keyboard

Handles the mouse moves, and button presses

Handles the IDE drive interrupts

This handles switching and selectiing the next task
Controls the redrawing of the virtual screens

handles messages from the interrupts to the applications
Controls the block device transfers

The user interface task controller

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Tick_count

System_semaphores

Task_List

Malloc_List
Device Table
IDT_Table

GDT_Table

Soft_Int_Table
Hard_Int_Table
Object_Table
MDSIO_Table

Hot_Spot_Table
Current_Task

User_Task

Mouse_X
Mouse_Y
Screen_X
Screen_Y
Mouse_Sprite
Screen_Under

Structure Names

Word

Word
Word

Word
Word
Word

Word

Word
Word
Word
Word

Word
Word

Word

Word
Word
Word
Word
160 Bytes
160 Bytes

Holds the numberof timesthe timer interrupthasbeen

called.

semaphores for the system tables
Holds the selectorto the data segementhat holds the

task list.

Holds the selector for the Memory allocation table.
Holds the selector for the device table.

Holds the selectorto a datasegmentthat points to the
interrupt descriptor table.

As for the IDT_Tablebut pointsto the Global Discriptor

Table.

A selector that holds the software interrupt handlers.

A selector that holds the hardware interrupt handlers.

A selector that holds the objects that have been opened.
A selectorthat holdsthe MDSIO objectsthat havebeen

opened.

A selector that holds the Hot Spot list.
This is the tasknumberof the taskthat is currentbeing

executed.

This task is where all the keyboard inputs will be

directed.

holds the current x position of the mouse pointer
holds the current y position of the mouse pointer.
the size of the screen (x)

the size of the screen (y)

Graphic of the mouse pointer.

Holds the screendata of the areathat was under the

mouse.

Structure Description

size name description
Task_Entry word back_link The task that is higher in the list
word forward_link The next task in the list
word TCB_segment selector of the Task Control Block
word TSS segment selector of the Task State Segment
Malloc_Entry dword size The size of the allocation
word owner The application that owns entry
word selector The data selector of the allocation
dword address Linear start address
Device_Table 16 bytes device_name the name of the block device
word gueue_seg the selector of the DPB
fword handler the sel:offset of the device handler
1 byte status holds the REALM and FAT bits
GDT and IDT entries 8 bytes ** see Intel 386 technical documentation **
Object_table_entry word MDSIO _num the number of the MDSIO object entry
word connections the number of connections to the object
dword block_num the number of the block in buffer
dword buffer the data area for the object buff

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Loaded_Object

service_desc

parameter_desc

MDSIO_access_rec

DeviceParameterBlock

Device_gqueue_entry

TaskControlBlock

dword
dword
word

dword
dword

byte

word
word

word
dword

byte

word

byte
word
word

word

32 bytes
32 bytes
32 bytes
3 words
dword
byte
byte

byte

byte

byte

byte

7 words

? unknown ?

byte
byte
word
dword
fword

word
word
dword
word
word
word
word
word

service_code
service_desc
instance_size

first_instance

last_instamce
permissions

object_number
app_number

instance_num

selector of the service code area
selector of the services parameter table
the size of the data area that the
instance needs.

the first instance of the object

the last instance of the object

the objects permissions byte, bit 7 is
used as a semaphore.

entry njumber of the object table

the application_numbeof the taskthat
owns the instance

the key into the object

instance_spacethe data area that hold the instance data

size
param[size]

size
type[size]
p_size[size]
owner

name

realm

group
MDSIO_pos
current_block
access_lock
type

status
gueue_head
gueue_tail
gueue_size

gqueue[size]

command
size
app_number
start_block
buffer

task_number
TSS sel
error_code
TCB_alloc
Code_alloc
Data_alloc
TSS alloc
Stack_alloc

the number of services
the index to the start of the parameter
description.

the number of parameters
byte:byte the defintion of the parameter
the parameter data size.

0000h system -else app that opened it
object name

the owning realm

the group the owns the object
device(byte):start_block(dword)

last block that was accessed

how the object was opened

the object type(Object, application,
data, realm)

the status byte of the device

the head entry into the device queue
the queue tail

the number of enties allowed in queue
the queue entry

the device specific parameters,the
device driver will know what the
positions are.

what the request is

number of blocks to be transfered
the application number

the start block of transfer

the data transfer buffer

the TSS selector for the task
the error code of the task error
the TCB malloc table entry
the code allocation

the data allocation

Task_ State_segment

Current stack

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

size name description

word LT_Stack_alloc stack needed when calling system
functions at different CPL's

word status the status word

word mess_head where the first message starts

word mess_tail where the last message ends

word mess_start start of messahe space

word mess_end end of message space

byte index_head head of the index entry queue

byte index_tail tail of the index queue

byte index_size the size of the index

byte filler ** keep things on a word boundary **

dword index_entry size(word):start point(word)

? bytes message spacespace for the messages

Hot_spot word owner 0000h system - application number

word top_x screen x of the top left

word top_y screen y of the top left

word bottom_x screen x of the bottom right

word bottom_y screen y of the bottom right

word task task number for the message

word message len the length of the message

byte message[lengthjhe message

? bytes graphic datafor the screergraphicfor theicon,

(top_x - bottom_x)/8*2 bytes

error_code ** 32bits in total**

3 bits system_part 000 - no error, 001 - not-used,
010 - application cpl 3,
011 - application cpl 2,
100 - application cpl 1,
101 - device error, 110 - task level
error, 111 - system error

3 bits serverity 111 -catastrophidailure (no recovery),
110 - failure, 101 - warnimg,
100 -comment, 000 - ok no error

26 bits specific_error this depends on the system part

** gpecific error for a system error **

2 bits filler 00
3 bits failing_part 000 - no error, 001 - task_list,
002 - malloc list , 011 -
3 bits error_type 000 - none, 001 - full, 010 - currupt,

011 - not available, 100 - does not
exist, 101 - privaledge violation

2 bits item_type 01 - task number, 10 - selector,
11 - system function
word failing_item the locator of item that caused the error

** gpecific error for a task error **

2 bits filler 00

4 bits failing_part 0001 - TCB variable, 0010 - TCB
mesage index, 0011 - TCB message
space, 0100 - Task status

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

4 bits error 0001 - in use, 0010 - full, 0100 -
currupt, 0101 - not available, 0110 -
empty, 0111 - not allowed.

size name description

word error_data data to help resolve the error

** gpecific error for a device error **

2 bits filler 00

byte device_number the device that failed

word error_data data to help resolve the error
realm 32 bytes name the name of the realm

3 words dir_position device(byte):start_position(dword)

32 bytes group the group namethat the realm belongs

to.

byte permissions unix a-like permissions
realm_directory 3 words next_block device(byte):block(dword)

** repeated one for each entry **

32 bytes name MDSIO object name

dword date day(word) : year(word) (julien date)

word type_size bits 15&16 type - 01 data, 01

application 11 - object : bits 1-14
instance size

3 words start_block permissions(byte) : device(byte) :
block(dword) - data
3 words start_block permissions(byte) : device(byte) :

block(dword) - code

3 words start_block permissions(byte) : device(byte) :
block(dword) - instance data

permissions 2 bits realm-w-r write accessead access
2 bits group-w-r as above
2 bits world-w-r as above
File Formats:
name size name description
Application_header 12bytes first record of the application code file
word data_size size of the app's perminate data space
word code_size size if the app's code
word stack_size size of the app's stack
word gueue_size size of the app's message queue
word message_spacesize of the space for the apps messages
word initial_size size of the data stored in the file
Object_service_header 7bytes First record in the service file
word code_start offset within the file where the code is
word code_size the size of the code area
byte services the number of services in this object

Object_service_record variable on the number of paran@ne record for each service

byte size the number of parameters
word type the parameter definition type(byte:byte)
byte size the size of the parameter

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Object_data_header word instance_size the size of the data area needed
dword first_instance the first instance of the object
dword last_instance the last instance of the object

System semaphore numbers:

task_list

malloc_list

device_table

IDT

GDT
software_interrupt_table
hardware_interrupt_table
object_table

MDSIO _table
Hot_spot_table

©OCooO~NOOUPA~WNEO

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 16/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Delete_Realm
Description:

Delete_Realmjs the function tho removethe namedrealm from the systemsrealm table. This
function will alsoreturnthe blockstakenup by the realmdirectoryto the free spacearea(the DOS
FAT). The functionwill errorif eitherthe realm doesnot exist, or the realm hasany objectsin it.
This function is callable by any system part, or by any application.

Formal Parameters:

realm_name fword pointer the name of the ream to be deleted
file_buffer fword pointer the data buffer of for the disk accesses

Returns:
error_code

Functional Decompsition:

Delete Realm

) emove update Record
signal(Realm_table) o MBSO table

add update Record
to MDSIO_table

item =

wait(Realm_Table) | | If ltem = null |

check_permissions

(Realm_name,null,0)

Yes No

error =
) Remove Realm
Realm_not_exist

Wait(MDSIO_Table)

add record to
MDSIO_Table

Signal(MDSIO_Table) Wait(MDSIO_Table)

remove record from
MDSIO_Table

Free Disk allocation

Signal(MDSIO_Table)

Check if Next_block
Is Emply

Remove Realm

record from Table

Yes no

Check if Realm error =
Is Emply Realm_not_empty

until all searched or found

B
if entry <> empty

wait(Device. FAT) | Signal(Device.FAT) |

error =
Realm_not_empty

Data Structures:

item file-pointer will hold the device:block of the realm_directory

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 16/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Create_Realm
Description:

Create_Realm, is the function that will add the named reatheteystemgealmtable. This function
will alsoallocatethe blockstakenup by the realmdirectoryfrom the free spacearea(the DOS FAT).
The function will error if the realm exists. This function is callable by any systempart, or by any
application.

Formal Parameters:

realm_name fword pointer the name of the ream to be created
file_buffer fword_pointer the buffer to be used for the disk accesses

Returns:
error_code

Functional Decompsition:

Create Realm

N

add update Record . item = _ . [Remove update Record
to MDSIO_table wait(Realm_Table) check_permissions Ifitem = nul signal(Realm_table) From MDSIO_table
(Realm_name,null,0)
. . No Yes . !
wait(MDSIO_Table) Signal(MDSIO_Table) o wait(MDSIO_Table) Signal(MDSIO_Table)
error =
. Add Realm
Realm_exists
add record to remove record from
MDSIO_Table MDSIO_Table
Add Realm Make Disk allocation Set Realvm Record
record to Table to point to
Disk allocation
wait(Device.FAT) Signal(Device.FAT)
Set FAT Entry
Data Structures:
item file-pointer will hold the device:block of the realm_directory

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 16/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Open_MDSIO_Object
Description:

This functionwill find and openthe requestedVIDSIO object.If the objectdoesnot exist and the
access rights that are requested by the calldoapeeate thenthis functionwill createtherequested
MDSIO object.

Parameters:
MDSIO _name fword pointer to MDSIO object name
MDSIO _realm fword pointer to the realm name that the object is in

buffer fword pointer to the file buffer

access-rights byte the access that is request to the object

type byte for multi-part objects, what part is being opened
Returns:

MDSIO_number returns the MDSIO_Table entry number

error_code

Functional Decomposition:

open_MDSIO_object

- |

check_permissions if Permissions
(realm,name, = 0Ok
access_type)

wait(MDSIO_Table) signal(MDSIO_Table)

Yes No

error =
acess_type = ?

permissions_error

write
create Read upéate
create MDSIO object if found if found
No Yes No Yes
if found error = if chk_perm.access error = if chk_perm.access
file_does_not_exists =read or none file_does_not_exists = none

Yes No No Yes No

error = error = error =
) . create object) Add MDSIO Record)
file_allready_exists file_open_clash file_open_clash

Allocate Disk Space Add MDSIO Record

N

wait(device.FAT) set FAT record signal(device.FAT)

Data Structures:
chk_perm.accesss returned from check permissionswith a variable that shows if the
MDSIO_obiject exists or not.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 16/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Delete_ MDSIO_Obiject
Description:

This function will find and delete the requested MDSIO obiject.

Parameters:
MDSIO _name fword pointer to MDSIO object name
MDSIO _realm fword pointer to the realm name that the object is in

buffer fword pointer to the file buffer

access-rights byte the access that is request to the object

type byte for multi-part objects, what part is being opened
Returns:

error_code

Functional Decomposition:

delete_ MDSIO_object

———

. check_permissions if Permissions
wait(MDSIO_Table) (realm,name - Ok

access_type)

signal(MDSIO_Table)

Yes No
error =
if found permissions_fault
No Yes
error = if chk_perm.access
file_does_not_exist = none

Voo /\No

error =

delete object o
permissions_fault

Remove Entry From

Free Disk Space .
Realm directory

wait(device.FAT) set FAT record signal(device.FAT)

Data Structures:
chk_perm.accesss returned from check permissionswith a variable that shows if the
MDSIO_obiject exists or not.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 16/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Close_MDSIO_Obiject
Description:

The functionwill closea MDSIO objectthat hasbeenopenedby the calling task. The function will
checkthe current_taskindecatoragainstthe owner field in the MDSIO table record,to seeof the
object can be closed.

Parameters:

MDSIO_numberword the entry number into the MDSIO object table.

Returns:

error_code

Functional Decomposition:

Close_MDSIO_Object

Wait(MDSIO_Table) if current_task = signal(MDSIO_Table)
- MDSIO[entry_number].owner 9 -

Remove entry error =
from table permissions_failure

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 17/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Extend_MDSIO_Object
Description:

This functionwill extendan openMDSIO Objectby the requestechumberof blocks. This function
will also allocatethe requesteddisk spacefrom the devicesFAT. The file will be extendedby
incrementof the devicesallocationunits. The numberof blocksallocatedwill bethe numberof disk
allocationunits that is neededo fit the numberof blocks that was requestedAlso the file will be
extented after the file allocation unit, that hold the current block.

Parameters:

MDSIO_numberword the entry number into the MDSIO object table.

size word the number of blocks that are to be added to the file.
Returns:

error_code

Functional Decomposition:

Extend_MDSIO_Object

. if current_task = .
wait(MDSIO_Table) signal(MDSIO_Table)
MDSIO[entry_number].owner

‘e /\NO

. _ [¢] _ (@]
if acess_lock = error =
read permissions_failure
Yes No
error = 9 9
o Extend_file
permissions_failure -
Wait(Device.FAT) Signal(Device.FAT)
get new allocation old = current_pointer current_pointer = new new = old
If device full then
error = device_full
Data Strucures:
variable name Description
old A temporary variable to hold the current_blocks next block pointer
current_pointer The currents block pointer to the next FAT entry.
new The FAT entry of the new block allocated.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 17/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Contract_ MDSIO_Object
Description:

This function will contract an open MDSIO Object by a single device allocation unit. This function
will also return the allocated disk space to the devices FAT. It will remove the FAT allocation, which
holds the current_block.

Parameters:

MDSIO_numberword the entry number into the MDSIO object table.

Returns:

error_code

Functional Decomposition:

Contract_MDSIO_Object

. if current_task = .
wait(MDSIO_Table) signal(MDSIO_Table)
MDSIO[entry_number].owner

‘e /\NO

. O O
if acess_lock = error =
read permissions_failure
Yes No
error = 9 9
o Extend_file
permissions_failure -
Wait(Device.FAT) Signal(Device.FAT)

. . Previous_pointer = .
Find previous block . clear current_pointer
current_pointer

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 17/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Read_MDSIO_Object
Description:

This functionwill readthe block thatis pointedto by the currentblock of the MDSIO_Objectrecord.
Theblock will bereadinto the calling task buffer. This function checksthe MDSIO recordto make
sure that the calling task is the owner, then calls block_request to read the block.
Parameters:

MDSIO_numberword the entry number into the MDSIO object table.
buffer fword task buffer for the read.

Returns:

error_code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 17/09/96

Designer: P.Antoine x-ref: MDSIO system
Function name: Write_ MDSIO_Object
Description:

This function will write to the block that is pointedto by the currentblock of the MDSIO_Object
record. The block will be written from the calling task buffer. This function checks the MEzSt2d
to make sure that the calling task is the owner, then calls block _request to write the block.
Parameters:

MDSIO_numberword the entry number into the MDSIO object table.
Buffer fword pointer to the buffer that is to be read.

Returns:

error_code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

COBOS
P.Antoine

17/09/96
Task_Control

Date:
x-ref:

Program:
Designer:

Function name:
Description:

Load_Application

This functionwill createthe memoryallocationsthatthe requestedaskwill need.Thenreadin the
information from the MDSIO_Objectapplicationinto the memoryallocations.It will also add the
new task control block the the task list, as an active task.

Parameters:

MDSIO_name fword pointer
MDSIO_realm fword pointer

to MDSIO object name of the application
to the realm name that the application is in

Returns:
error_code

Functional Decomposition:

Load Application

/

If open ok

Read Data &
Code into task

Call open_MDSIO_Object

Call close_MDSIO_Object

call move read block
read_MDSIO_block to memory allocation

Read Header
add to task_list

Create TCB

wait(Task_List) signal(Task_List)

add to task_list

call Allocate_memory
for TCB memory

call allocate_memory

for transfer stack

call allocate_memory
for Data memory

call allocate_memory
for Code memory

call allocate_memory
for local stack

Box description:

Call open_MDSIO_object
Read_Data & Code into task
Call read_MDSIO_block

will only open the data side of the MDSIO object

will read both the data and code into the memory allocations
will needto call seek MDSIO_bloclso thatthefile is positioned
after each block read.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 17/09/96

Designer: P.Antoine x-ref: Task_Control
Function name: Close_Application
Description:

This function will remove the application from the task list,the TCB is also deleted plus the
allocations that it used. This function will also search the system tables and will cidiseemove
function for any objectthat is ownedby the applicationthat is being closed.Also if the task being
close is the current task and there are no other tasks then this function wdlbsell System
Parameters:

Application_number word the application to be closed.

Returns:

error_code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 18/09/96

Designer: P.Antoine x-ref: User_Input
Function name: Amend_Hot_Spot
Description:

This function will add/removea hot spotfrom the jot spotlist. This function will wait(Hot_Spot),
then add to the table the new entry, thigmal(hot_spot) to release the table.

Parameters:

command byte 01 - add, 02 - remove

owner word application number or 0000 for system

top_x word top left hand x co-ord

top_y word top left hand y co-ord

bottom_x word bottom right x co-ord

bottom_y word bottom right y co-ord

mess_task word the task that the object is to sognal when activated

message fword pointerto a structureword:[bytes],wherethe word is the number
of bytes in the the message.

graphic fword pointerto a dataspaceof 160bytesthat hold the graphicof the

icon if this is Null then there is no graphic.

Returns:

error_code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Date: 18/09/96
x-refs: delete_realm, create_realm, delete_ MDSIO_object
open_MDSIO_object

COBOS
P.Antoine

Program:
Designer:

Function name:
Description:

Check_Permissions

This function will check the MDSI@bjectpermissionsandwill returnthelocationof the object,and
if the objecthadbeenpreviouslyopenedwill returnthe highestopenaccessf the object. The access
types that are allowed are: read, write, create, update. A file cgrebedoy manyapplicationgo be
read,but by only oneapplicationthatwill write to it. If the permissionghat arerequesteds invalid
thenthis functionwill returnan error code.Also this function doesnot obeythe semaphoren the
MDSIO table, and should only be called by a function that has previeasigd for the semaphore.

Parameters:

MDSIO_name fword pointer to MDSIO object name of the application

MDSIO_realm fword pointer to the realm name that the application is in

access_type byte the access that is required for the MDSIO object

Returns:

Result byte 01 - failed, 00 - permissions Ok

State byte 00 - does not exist, 01 - exists but not open, 02 - opened read,

03 - opened for write/update/create

Functional Decomposition:

Check_Permissions

wait(Realm_Table)

If permissions = OK
and name <> Null

Search

signal(Realm_Table)
MDSIO_Table

for each entry Yes

if realm.name = realm search realm table

and

N search realm
name = object_name |

Yes

for all blocks *

[®] o
. . . on realm table if object.name =
if access = "read
Request.name
Yes No Yes
9 9 Block_Request . if task.realm = 9
state = open_update state = open_read - if Realm = realm
(Realm_Table) realm
| Yes Yes No
if task.realm = 9 Permissions = OK 9 if (task.group = 9
realm Location = object object.group) and
access.group =
MI Yes (access?equpest)
. O o [®] -
if (task.group = Permissions = OK
realm.group) and Location = Realm
(access.group = Yes No
access.request
d) Permissions = OK 0 if access.world =
Location = object access.request
No Yes
. o g Nn/l Yes
if access.world = Permissions = OK o o
access.request Location = Realm Permissions = Fail Permissions = OK
Location = Null Location = object
No Yes
[¢ [

Permissions = OK
Location = Realm

Permissions = Fail
Location = Null

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: Task Control
Function name: Switch_Task
Description:

This function will update the timer couahdthenswitchthe currenttaskthatis runningfor the next
task in the task list, if there is not a next task in the task list then this function does nothing.

Parameters:
<none>
Returns:
<none>

Program Fragment:

timer_loop:
update internal timer count

i21_task_swtc:
if current task is zero jump exit
if next task = current task jump exit

get next task

if next task is suspended jump i_21 task_ Switch
move task-pointer to task-switch-tss.back-link
exit

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: Exception Handler
Function name: Handle_Exceptions
Description:

This functionwill handlethe exceptionghat are causedoy the applicationsand systemcodethatare
runningon the system Eachexceptionentry will point to a pieceof codethatwill setthe exception
numberandany error codeinto a systemarea,then call the exceptionhandler,which will thendeal
with the exception.As a specialcase,the #FFFFFFFFhand #FFFFFFFEh error codesfor a ODh
(GPF), then these represent invaild software or hardware interrupts.

The code for each exception will look like:
push ax
mov ax, sys_segment
mov ds, ax
pop ax
pop ds:[error_code]
mov ds:[exception_number], #exception_number
call error_handler
iretd
Note: that not all exceptions have error codes so that the pop error_code may not happen.
Parameters:
<none>
Returns:

<none>

Functional Decomposition:

Handle_Exceptions

N

. . if exception = 0Dh . .
set exception bit draw_box K clear_box clear exception bit
and special error
No Yes
. . display "invaild . if FATAL then
display Infomation) Wait for keypress
interrupt” message close_app(current)

until except_key = set

display(SS:ESP)

set interrupt bit wait for keypress
for crashed app P P

display(Exception)

display(CS:EIP)

display(current_task
play(-) for crashed app

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: User Input System
Function name: Check _Mouse
Description:

This procedure will update the location of the mouse and do any redraws on the screeredisaiys
If the mousemousebutton hasbeenpressedthis function will checkto seeif the position of the
mouse click is in &ot spot, if it is it will then send the message that is in the hot spot.
Parameter:

<none>
Returns:

<none>

Functional Decomposition:

Check_Mouse

If mouse moved If mouse clicked

for all HOT_SPOT table

system.mouse_x system.mouse *
Y - 4 o Clear_Mouse Draw_Mouse check Hot Spots
+= x_offset +=y_offset

if mouse_position
inside hotspot

send_message(
task,message)

Note: If mouse_position inside hot spot, is :

if (system.mouse_x >= hot-spot.top_x and system.mouse_x <= hot_spot.bot_x) and
(system.mouse_y >= hot_spot.top_y and system.mouse_y <= hot_spot.bot_y)

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: User Input System
Function name: Check_Keyboard
Description:

This procedurewill readfrom the keyboardthe charatethathasjust beentyped,andif the exception
bit is setit will setthe exceptionkey bit. If the exceptionbit is not setit will thensendthe key that it
hasjustreadto theuser_task Thisfunctionusessend messageendthe keystroketo the usertask.
this function sends the raw keystroke to the task and not the ascii value.
Parameter:

<none>

Returns:

<none>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: MDSIO system, Control Hardware interrupts
Function name: Block_Request
Description:

This function will add the requestfor a block transferto the specific devicesqueue,then call the
gueue handler for the specific device. As each queue handler is device specific it cant be modled here.

Parameter:
<none>
Returns:

<none>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: Main system
Function name: Allocate_memory
Description:

This procedurewill allocatememory,asrequiredby the systemlf eitherthe allocationableis full or
if the memeory is full then it will return an error code to the calling procedure.

Parameter:
owner who is requesting the allocation
size the size of the allocation
Returns:

malloc_number the memory table allocation number
selector the GDT selector for the data segment

Functional Decomposition:

Allocate_Memory

T

wait(Malloc) Search Malloc Table signal(Malloc) if found = false

error =
if Allocation = free failed_allocation

compare allocation
size with request

too small same size too big
. allocation.owner .)
do nothing if allocation table full
= request.owner
found = true
No Yes

allocation.owner
= request.owner
found = true

Split allocation

Add new entry Amend old entry
base = old_base + size size = size

size = old_size - size

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 20/09/96

Designer: P.Antoine x-refs: Main system
Function name: Send_Message
Description:

This procedurewill adda messageo the taskspecified'smessageueueit will errorif thetaskdoes
not exist, the message queue is full, or the message fills up the targets message space.

Parameters:
word: destination task number
word: message size
fword: sel:offset of message
Returns:

error_code

Functional Decomposition:

Send_Message

check target task.state = "inuse" add message task.state = "free"
wait(task_list) signal(task_list) find index entry if message_head +
message_size
mod
i il
if task <> vaild o if index head = message_spa(l:e
inc index head) . < message_tail
index_tail then
error =

error = if index head >= index_full
task_does_not_exist index size then =1

copy message to
message space

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 21/09/96

Designer: P.Antoine x-refs: Main system
Function name: Read_Message
Description:

The functionwill reada messagdrom the requestingask own queue,and placeit in the message
buffer for the task.After eachmessagdasbeenread,the index pointeris removedby incrementing
it, and modding it with the index size. Also the message buffer is also updated, by addmegshge
sizeto the startpoint and moddingit with the size.If the message&ueueis emptythenan erroris
generated.
Parameters:

fword: sel:offset of message buffer

Returns:

error_code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 21/09/96

Designer: P.Antoine x-refs: MDSIO System
Function name: Open_Object
Description:

This functionwill createa connectiorto an objecton the systemIf the objectis allreadyloadedthen
this function will just makea connectionfor the calling task.If the the objectis not allreadyloaded
then this function will then load the object, then make the connection for the task.

Parameters:

realm_name fword pointer to the realm name
object name fword pointer the name of the object

Returns:

word loaded object entry number
error_code

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 26/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: Open_Object
Program Fragment:
found =0

wait(Object_table)
for y = all entries on object table until found

do
wait(MDSIO_table)
X := object_table[y].MDSIO_entry_number
if (MDSIO[x].realm = request.realm and MDSIO[x].name = request.name)
then
if (MDSIO[x].permissions.world = rw) or
(MDSIOIx].realm = task.realm) or
(MDSIO[x].group = rw and MDSIOIx].group = task.group)
then
for a = 0 to size of Loaded_object
do
if loaded_object[a].object_number =0
then
loaded_object[a].object number =y
loaded_object[a].app_number = task.app_num
loaded_object[a].instance_number =0
b := malloc(instance_size)
if b not null
then
loaded_object[a].instance_space = b
loaded_object[a].object number =y
foundz = a
else
error = "no memory"
fi
fi
done
if foundz =0
then
error = "loaded_object table full"
else
object_table[y].connections++
fi
found = x;
fi
fi
signal(MDSIO_Table)
done
if (found = 0)
then

z = open_MDSIO_object(request.realm,request.name,r,service)
v = open_MDSIO_object(request.realm,request.name,rw,object)
if z.state or v.state = failed
then

error = "failed to open MDSIO object");

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

else

*** find space in object table ***
for j = 0 to object_table_size until found

do

if object_table[j].connections =0

then

*** gpace found allocate memory for object ***
found =1

¢ = malloc(block_size)
if c = null
then
exit(error memory full)
fi
object_table]j].buffer = ¢
read_MDSIO_block(z, 1, c)
d := malloc(object_header.code_start - 7)
e := malloc(object_header.code_size)

*** make sure allocations worked ***
if (d or e = null)
then
free(c, d, e)
exit(error "memory full")
fi

*** |oad the service code - simple file copy ***
copy from file code_startto e

*** |oad the parameter descriptions ***
current_location = services * 3
for i =1 to object_header.services

do
move service param record to current_location
d:[i*3] := current_location
current_location += service_param_record_size
done

*** create the loaded_object record ***
for a = 0 to size of Loaded_object

do
if loaded_object[a].object_number =0
then
loaded_object[a].app_number = task.app_num
loaded_object[a].instance_number =0
b := malloc(instance_size)
if b not null
then
loaded_object[a].instance_space = b
loaded_object[a].object number = j
foundz = a
fi
fi

*** check that the loaded object was created ok ***
if foundz <> 1
then

error = "memory full / loaded_table full"

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

else

fi
fi
done

free(c, b, d, e)

*** read object header ***
read_MDSIO_block(v,1,c)

*** jnit the object table entry ***
object_table[j].MDSIO_num =v
object_table]j].buffer = ¢
object_table[j].connections = 1
object_table[j].loaded_object = a
object_table[j].block_num =1
object_table]j].service_code = e
object_table[j].service_desc =d
object_table[j].instance_size = intance_sz
object_table[j].last_instance = first word of ¢

*** if it did not enter the section above this will be zero ***

if foundz <> 1
then

error = "object table full"

fi

*** close the code file ***
close_MDSIO_object(z)

fi
fi
signal(Object_Table)
return foundz

Data structures:

Thesingleletter variables(c,d,e) usedabovewill be allocationpointers(32bit word:word),that will
hold memory references in a segment:entry number format.

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 26/09/96

Designer: P.Antoine x-refs: MDSIO System
Function name: Close_Object
Description:

This functionwill removea connectiorto an object,andremovethe loaded-objectableentry. Alos if
the numberof connectionsreachzero for the particular object, the the object will be closed,and
underlaying MDSIO object will also be closed.
Parameters:

word loaded object entry number
Returns:

error_code

Functional Decomposition:

Close_Object

wait(Object_table) if current_task = signal(Obiject_table)
ject Loaded_object[num].owner g Ject

yes no
[®
. error =
remove connection
"not_owner"
free decrement L .
. (. . if object_table[object_num].
instance_space) object_table[object_num].]
. connections =0
connections
yes
[®
close the object
close_MDSIO_Object free:
(MDSIO_num) service_code, buffer
service_desc

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 26/09/96

Designer: P.Antoine x-refs: MDSIO System
Function name: Find_Instance
Description:

This functionwill load an instanceinto the local instancespacelt will dependingon the type field
find anabsoluteinstancgwhich is aninstanceaccessedby a direct request) or the next, first, or last
instance of the object. If the object cant be found then the function will reutn an error code.
Parameters:

word loaded object entry number

byte type - 00 - absolute, 01 - next, 02 - first, 03 - last

dword (for "absolute" find) the instance number

Returns:

error_code

Functional Decomposition:

Find Instance

o TV

if loaded_object[num].app_number|
if first_instance = 0 _object l-app_ if block_num <> 0 if no error
- = current_task

Yes Yes no

error = error = read_MDSIO_object(| copy instance to
. type? N N check object table
"no instance of object” not owner error' block_num) instance space

first

last next absolute

block_num = block_num = block_num = block_num =

*
N . . . wait(Object_table) for all loaded_object signal(Object_table)
object.first_instance object.last_instance instance.next instance_request

if(loaded_object
= object_num) &
(instance_num =
request_num)
then
error =
“instance in use"

Notes:

first. all other instancesof the sameobject should be checkedto seeif the instanceis loaded
elsewahere!!!

After all MDSIO reads the error code will be checked to see if the block is off the end of the file.

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 26/09/96

Designer: P.Antoine x-refs: MDSIO System
Function name: New_Instance
Description:

This functionwill adda newinstanceof an openedobject.ltwill addthe instanceto the end of the
MDSIO object. It will if nessasary extend the MDSIO object.

Parameters:

word loaded object entry number
Returns:

error_code

Functional Decomposition:

New_Instance

|

wait(object_table) if last_block = 0 signal(object_table)
no yes
extend instance first instance
read_MDSIO_block(If last_instance.offset X object_table.last_instance object_table first_instance
N - . - extend_MDSIO_object
last_block) + size < block_size - - = new_block:0000 = new_block:0000
yes no
g
In the same block Extend the instance
last_instance.next = write_MDSIO_block(object_table.last_instance . last.instance.next = write_MDSIO_block(
- . N iy . extend_MDSIO_object
offset + size last_block) = last_instance.next - - new_block:0000 last_block)

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

COBOS
P.Antoine

29/09/96
MDSIO System

Date:
x-refs:

Program:
Designer:

Function name:
Description:

Delete_Instance

This procedurewill removean instanceof an objectfrom an object,andwill addthe removedobject
to the front of the free spacechain. It will also contractthe MDSIO object, if the block becomes
empty. It will not delete the object if the object becomes empty.

Parameters:

dword instance number

word loaded object entry number
Returns:

error_code

Functional Decomposition:

Delete_Instance

e

remove from chain

wait(object) wait(object_table)

—— N

read_MDSIO_block(if forward.pointer if back.pointer write_MDSIO_block(
instance.block) <> Null <> Null instance.block)

signal(object_table) wait(object)

update last pointer

amend forward block

amend back block

read_MDSIO_block(
object_header)

set instance to be
a freespace pointer

write_MDSIO_block(
object_header)

N

S ——

read_MDSIO_block(
forward.pointer.block)

instance.back =
back.pointer

write_MDSIO_block(
forward.pointer.block)

read_MDSIO_block(
back.pointer.block)

instance.forward =
forward.pointer

write_MDSIO_block(
back.pointer.block)

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 01/10/96

Designer: P.Antoine x-refs: Check_Mouse
Function name: Draw_Mouse
Description:

This procedurewill copythe backgroundrom underthe mouse thencopythe mousegraphicto the
spacewherethe mouseis. This procedureusesthe sametechniqueas doesdraw_box.The screen
position for this function will be worked out as follows:

xor edi ,edi
mov di, fs:[mouse_X]

shr edi ,3 ; divide by eight

xor eax, eax

mov ax, fs;[mouse_y]

shli eax, 4 ; multiply by 16

add edi, eax

shl eax, 2 ; multiply by 4 (16*4 = 64)

add edi, eax ; how points to the screen byte
Parameters:

<none>
Returns:

<none>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 01/10/96

Designer: P.Antoine x-refs: Check_Mouse
Function name: Clear_Mouse
Description:

This function is basically the same as clear_box, exceptb the @malier.The positionon screens
found in the same way as draw_mouse.

Parameters:
<none>
Returns:

<none>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS Date: 01/10/96

Designer: P.Antoine x-refs: Handle_Exception
Function name: Display
Description:

This function will display in the areathat has beengrayedby the draw_box function, the text
messagehatis in the zeroendeddatabuffer. The function will displaythe text at the text location
releativeto the start of the gray area,andin the colour that is passedo it. This functiin will only
display the following charaters, and they are numbered from 1, amotaascii:

A-Z a-z, #,9%,<,>",: 09
so,Ais 1, Zis 26, ais 27, etc...
Parameters:

byte colour standard VGA 16 colours

byte x_position

byte y position

fword pointer to a data area with the message in it.

Returns:

<none>

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

Program: COBOS
Designer: P.Antoine
Function name: Display

Program fragment:

cmp #x_param, 26h

ja size_error
cmp #y_param, 12h
jb all_ok
size_error: mov eax, #size_error_code
jmp exit
all_ok: xor eax, eax

mov al, #y_param
imul al, 0320h
add ax, #x_param

Ids esi, #data_buffer
les edi, #charater_data

mov dx, 3c4h
mov ax, 0f02h
out dx, ax
mov dx, 3CEh
mov ax, 0305h
out dx, ax
mov ax, 0003h
out dx, ax
mov ah, #colour
mov al, 00h
out dx, ax

draw_loop: xor ebx, ebx
mov bx, ds:[esi]
cmp bx, 00h
je exit

mov dl, es:[edi*8]
mov gs:[eax], dI
mov dI, es:1[edi*8]
mov gs:80[eax], dI
mov dI, es:2[edi*8]
mov gs:160[eax], dl
mov dI, es:3[edi*8]
mov gs:240[eax], dl
mov dI, es:4[edi*8]
mov gs:320[eax], dl
mov dI, es:5[edi*8]
mov gs:400[eax], dl
mov dI, es:6[edi*8]
mov gs:480[eax], dl
mov dI, es:7[edi*8]
mov gs:560[eax], dl

inc eax
inc #X_param
cmp #x_param, 26h
jae exit
jmp draw_loop
exit: ret

01/10/96
Main system

; screen X size 38 charaters

; screen y size 18 lines high

; what line to start on

; proper start position

; get the data buffer

; where the charcter set is stored
; sequencer control register

; set to all planes

; control port (VGA/EGA)
; read mode 0 write mode 3

; set to data replace

; set/reset to the colour

; get the charater

; if the caracter is zero then exit
; first byte of the charcter

; store it on the screen

; second byte

; store it one line down

; if X = 26 then end of screen

BEng/BSc Final Year Project Report

BEng (Hons) SWERTS 1996 / 97

The system has two different types of executablesypécation, and theservice

The applicationis free standingand can be run by a userdirectly from the systemmanager.The
applicationcancall the systemfunctions,plusis ableto open/closeordinary applicationfiles. It will
be ableto createlocal variables.The baselanguagefor both the applicationsandthe servicesis the
same, except that the application can call functions that are external.

The service is padf an object,thatonly partof an objectthatcanbe seenby the outsideworld is the
servicesThe servicescannotcall any applicationor servicethatis outsidethe objectthat it belongs
to. They may hold the instance of otherobjectsas part of its dataspace.The servicemay also use
local variables, which are not stored as the permanent data parts of the object is.

A service is called by:
realm:object_name][instance].service_name(parameter_list)

where:

realm is a data space,much like a userin UNIX, but it is flat, thereis no directory
structure.lt can containapplications,objects,and flat files. the realmis optional,
and if left out, the call will default the current realm.

object name is the name of the object that the service is to be found in.

instance is the particular instanceof the object that is being called. The instanceis a
particular variable type that will only hold the addressof the datarelative to the
object instance.

service_name the name of the particular service that is being called.

The languagestructureis a very simple one, two loop structuresfor and while, one condition
structureif .. elsif .. else and a basicset of mathematicabperators*, +, -, / (division). With a
simple assignmenbperator.This a very basiclanguageset, an as this languageis for a 3rd year
project, and is only to demonstrate that way the object system works.

ie. while (condition is true)
{
statements;
3
{} = multiples
() = optional fields

| = selection between fields
, = separates the fields
= means the specified characters are expected

language := application | object

application = '@COPLE:application!', identifer, app_body

object = '@COPLE:object!, identifer, {declaration}, {service}
app_body .= { statement | external_call | system_call }

service := service_header , '{', service_body, };'

service_header := (type), identifer, ' (', (parameter_list) ,)’
parameter_list := parameter, (',', parameter)

parameter = type, identifer, ('=", [constant | identifier]) * constant= default
value *
service_body :={statement | service_call }

compound_statement := {', {statement}, '};

statement = declaration | compond_statement | expression_statement | for_statement |
| forall_statement | while_statement | if_statement
declaration := [struct_definition | array_definition | standard_def], (' ="', constant), " ;"'

| instance_def, ;'
struct_definition:= 'struct' , identifer, '{’, {declaration}, '}
array_defintion type, identifer, '[', integer_const, ({, integer_const}), '
standard_def type, identifer

instance_def := 'instance', identifer, ('[', integer_constant,']"'), ' of ', object_id
expression_statement := identifer, ' := "', expression, ' ;'
for_statement :='for','(', expression, expression, expression, ') ', statement
forall_statement:="forall ', ' (', indentifer, ' of ' , object _id, (' with ', parameter_lis), ') ',
statement
while_statement="while', ' (', expression , ') ', statement
if statement :='if’, expression, statement, ({'elseif', expression, statement}),

(' else ' statement)
expression = '(', expression, ') '] [constant | logical | arithmatic | identifer]
logical := ([identifer | constant]) , logical_operator , [identifer | constant | logical]
logical_operator:= 'It'| '<'|'le'|'<="|'gt'|">"|'ge'|>="]|'eq"'|'="]|'ne'|'<>'
arithmatic := ([identifer | constant]) , aritmatic_operator, [identifer | constant | arithmatic]
arithmatic op ="*"|"+"|"'-"|"/]"
type = (address_typer), 'int' | 'real' | 'boolean’ | ‘char' | 'instance’ | struct_array_id
address_typer ='$"’
struct_array_id := indentifer

constant integer_constant | real_constant | boolean_constant | char_constant |
array_constant | struct_constant

integer_constant= (' -) { digit }

real_constant :=('-"){digit},"'.", {digit}

boolean_constamt 'true ' | ' false '

char_constant := ', charater, ' | escape_sequence

array_constant :="'""' {char_constant},'"'|'[", constant, ({',"', constant}), ']’
struct_constant :='{", constant, ({',', constant}),'}"

system_call = system_function | [' new ' | ' delete '] object _id

external_call :=object _id,".", service_call

service_call := identifier , ' (', parameter_list, ')

object_id := (identifer,': "), identifer, ('[', identifer,']")

identifer =0'%), {[a-z] | [A-Z] | ' _" | [0-9]} * max length 32 items*

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

system_function:= * to be defined *
escape_sequence * to be defined *

charater :=*asciivalue 0-255*

digit =1|2|3|4]5|6]7]8]|9]0

BENng/BSc Final Year Project Report BEng (Hons) SWERTS 1996 / 97

