
��������� �
	������	��

������������������ "!#��$&%&')(+*-,.������/0��,1,1*&/0���2$3��*

45,1(76�8#/09:,�!<;7�=%3,>9?�

@A/0��(+6�B5,>(+*DCE*-�7FG,>HI%

JIK�K�L�MNK�O

PRQ STQ U

V�W�X�Y[Z�\�\^]_X#`badcfeg]_YE`bhji5k7]Almaon�][\piA`gqrX�sutwv�k>`�]Ax

yRz1{}| ~ • € | • ‚ •„ƒ†…_€ ‡Rˆ ‰ € ŠRƒ •"ˆ

‹ ŒŽ•.•b• ‘ ’”“–• — “–˜š™”›„œž•Ÿ˜g•w

¡£¢¥¤„¦)¢¥¤

§�¨-©Nª^ª�«N¬�¯®°«²±�¨´³¶µ¸·¹¨»ºš«½¼¯®¾«¿±�¨-³0µ¸ª^À=·¹¨Aº�À=ÁÃÂÄÀ=Åª^µ¸ÆÃºg³0·¿ª^À)§�Ç^ÈÉ³¶±�ÆwÈ

ÊÌË>ÍÏÎÑÐ´ÒÔÓ>Î

"The fields of both distributed computing and object oriented programming area very
active at the moment. This is mostly due to the size and complexity of programs

getting larger, and with the rise in use of both networks and the Internet. So systems
that can handle both distributed and object based programs are becoming of great

interest at the moment. So this project report is on a project that had the aim of
designing and building the core of a operating system, that melded the areas of

distributed computing and object oriented programming together."

ÊÌÓ�Õ�Ö>×�ØÚÙ¶Û�Ü�Ý�Û+Þ�Û+Ö>Î»Í

The project supervisor for the COBOS project was G.Nyerges.

The project was written using Borland's TASM and TLINK, assembler and linker,
and the Norton disk utilities was used in the testing of the system.

All code contained within the COBOS project was written by P.Antoine.

This report has been submitted for assessment
towards a Bachelor of Engineering degree in

the School of Electrical, Electronic and
Information Engineering,

 South Bank University.

This report is written in the author's own words
and all sources have been properly cited.

Signed..
Peter Antoine

22nd April 1997

ßŽàmáãâåä–áåâçæ

èêé_ëíì^î_ï#ð5ñ_ë°ò¸î<é ó

· ô

ò¸õ÷öùø ú�û�ü-ý#ñ_ë°ò½þ�ý#ö ÿ

· �

ý��êòrþ�ýÌì��<û��rýÌö �

·
� ý#ñ	�<éfò¸ñ	����
��<ñ���<ì^î5ð<é_ï ø �)î<é_ë^ý��<ë �

·
Introduction into the area of Object Oriented programming,
Distributed architectures. The area surrounding the project and its
design.

� ý#ñ	�<éfò¸ñ	���

ô

���

ì^î��<ñ	� ó��

·
Description of the project structure, the functional overview,
structural Description, Installer design, Loader design, and
Programming methods.

��ý#öEð��rëíöùø

�

ò¸öEñ<ð<öEöŸò¸î5é ���

·
What was learnt from the project. How successful was the project,
Problems that was had while implementing the project. How the
system deviated from what was imagined.

�)î<é<ñ��¸ð<ö�ò¸î<é ���

·
��ý#ñ<î5õ÷õ2ý#é_ï��_ë°òÉî<é<ö ���

·
��ì^î�ü-ý#ñAë������<é<éfòÉé�� �„ó

·

Ãò¸û��&ò¸î	�<ì��

�

���! #"$�¸î<öEö%�<ì&�mø ��ý�'gý#ì�ýÌé<ñ_ý#ö ��(

· ô

���

ýÌé_ï ò¸ñAý#ö

·)�*+*-,/.10-2435)

:Technical Details
)�*+*-,/.10-24376

: Using COBOS
)�*+*-,/.10-24378

: API Function Descriptions
)�*+*-,/.10-24379

: Yordon Specification
)�*+*-,/.10-2437:

: SDS-3 Design
)�*+*-,/.10-2437;

: COPLE Definition

<1=�>@?BACEDF�>%GHAI=

This report is the final project report for my BEng\BSc final year project. The project
is part of my BEng (Hons) Software Engineering for Real Time Systems (SwERTS)
degree.

The project aims, (as detailed in the "aims and objectives" section of the report, was to
design and build a protected mode operating system on a PC. Which has the capasitiy
to handle objects that are designed to be independant from specific applications. These
objects will be different from the type of objects that are found in the object oriented
languages like C++, where the objects are a part of the application program itself.

 The format of the project is quite straight forward and some of the chapters have been
split up into sub-chapters. The main body of the report is found in two sections, the
"technical background" and the "technical approach". The first will give an
introduction to the project area, and will describe the context in which the COBOS
project fits into. The technical approach section, will explain in detail the design ideas,
and how the sub sections work. There is a small discussion at the end of the section on
the methods that are used to control the complexity of the project.

In the appendices there are descriptions of how in brief the COBOS system uses the
protected mode, how some of the sub-components work and are used, how the to use
the system, the list of Application Programmer Interface functions, and the full
specification and designs for the system.

Finally two 3½" floppy disks are attached to the back of the report. The first of these
holds a copy of all the source code for the system. The second is an installable version
of the system as it stands at the moment. I hope that you enjoy reading this report.

J

KLG&M N OI=PC QLR#S/TIFP>%GVUWT$N

The single aim of this project is to design and build an operating system to run on an
Intel (type) 80386 (or faster) based Personal Computer. The operating system will
support the needs of persistent objects and will also control the underlying PC and
peripherals.

The project splits into four major parts:

A Concurrent Kernel·
An Object Control Sub-System·
A user interface·
A DOS loader·

The concurrent kernel is the part of the system that controls the whole operation of the
PC and its underlying components and peripherals. This is the part of the system that
will controls the context switching, the access to the system part, and basically
controls the running of the system.

The object control sub-system, will do the work of loading and closing the objects. It
will also control the accesses that the application programs will be allowed to make to
the objects. Instances of the objects are the responsibility of this sub-system and it will
handle the creating, deletion, and updating of these for the application. One thing that
this system is not responsible for is the creation of the objects themselves, a separate
application (a compiler) would be used to actually create the objects themselves. A
more detailed description of the object control system will be given later.

The user interface is a graphical based system, and will be based around the idea of
virtual windows which are independent of the system and leaves the application
knowing nothing about the system. This interface will use both the mouse and the
keyboard to input data and commands to the system. The system will use icons to aid
the communication between the user and the system/applications.

A finally, the last of the objectives is to write a DOS loader that will load and initialise
the COBOS operating system from the DOS command line. As DOS is not concurrent
and also runs in Real Mode, the loader will also have the responsibility of switching
the PC in to Protected Mode which is the native mode of the 80386+ processors.
Also as part of this a small installation program is needed, that prepares an
environment that the rest of the COBOS system can use.

X

YZT\[]GVU^TI?BOIR_[`TaN

The following are the items that are to be delivered as part of this project.

b�c�d egf�h�d�ikjml n�d�o�p�i&h

(Already delivered)·

b�c�d q�j�f�r�sWtui�p%vwd�x�h7n�d�o�p�i&h

·

b�c�d y�o�d�i�r�h/j�f�z {�|~}@h�d•l

·
This is be provided on a 3½" floppy disk, and is a fully
executable version of the project.

€•f e‚f�}�h1r�s‚sƒd�i7q~„�f�x�h/j�p�f

·
This program and batch file, will create a file that the
COBOS disk system needs to use as its own virtual disk
drive. This file will make it possible for COBOS to
allocate its own disk space in blocks instead of clusters,
which will be needed by the system.

b�c�d y�o�d�i�r�h/j�f�z {�|~}@h�d•l {�p�„	i�x�d …†p!‡�d

·
This is provided on a separate 3½" floppy disk and has a
full listing of all the code that makes up the project.

ˆ•f�jmf�}�h1r�s‚sƒd�i‰r�f�‡ Š�d�l‹p o�i�p�z�i�r�l‹}

·
These will on the same floppy disk that has the operating
system on it.

Details of how all the programs are to be used can be found in the two appendices,
"B:Using COBOS" and "C: API Function Descriptions". These two appendices put
together make up the user guide.

Œ

•5ŽE•$•$‘E’&•�“•”—–˜“I•$™�šI›•œIž$‘�Ÿ ¡¢œI‘�£¤Ž$¥a£

¦¨§ª©�«-¬ƒ¯®°©�±V²+³µ´�¶+·&´w©�¸¹ªº»²¼§½©u³¾¸½©�·]´%ª¿-¸ª³¾´‚²À¬ƒ³Á¶ªÂª²À©�¸Ã±Ä/ÅÃ«½Âª²À³¾ºªÆ�·&ºª¸¹/¶ª®°©�±Ç²+ª¬È³¾©�º/²À©�¸

´mÉ/´‚²À©&ÅÃ´HÊÄË�Ì¾´w»ÅÃª´‚²½ÅÃª¸ª©�¬Èº¹ª«-©�¬È·H²À³¾ªº¹´mÉ/´‚²À©&ÅÃ´%ª¬BÍ/©�¬Èºª©�Ì¾´%·]¬È©�±Hªºª±ÇÂ+¬È¬ƒ©�º¯²ƒÎ�´w»²¼§½³¾´

±H§ª·&«ª²À©�¬+Ï»³¾Ì¾Ì/³¾º¯²¼¬Èª¸/Â-±H©�²À§ª©�´w©�±Hªºª±Ä©�«ª²À´VÎ�·]ºª¸¹³Ð²/Ï�³¾ÌµÌÑ·&Ì¾´w¹Æ1³ÓÒ/©u·�¸½©�´w±H¬È³¾«ª²À³¾ªº¹ª¿½²À§ª©

Æ1©�ºª©�¬È·&ÌÑ·&¬È©�·�ª¿½²¼§½©u«-¬È/®°©�±V²mÊÄ¦¨§½³¾´ÔÏ»³¾Ì¾Ì/Æk³ÕÒ/©u·•¶+©&²Ö²À©�¬×Â-ºª¸ª©�¬È´‚²¼·&ºª¸ª³µºªÆ�ª¿ÙØÁÏ»§1É-Ø½²¼§ª©

Ú¤Û�ÜÝÛ�Þ

«+¬È/®Ð©�±V²+§ª·&´@¶+©�©�º�Ï�¬È³Ð²ß²¼©�ºÙÊ

à¢á�â�ã7ämåæâ	ç è	é%êwë�ì�ã�í î

·
A discussion of what an object is and why objects are used. An
introduction to persistence. The major ideas that are found in
object oriented programs / systems.

ï

è�ç�ì�ð	ñ�ñ&ë�ç�ì�ò ó

·
What is concurrency and what are the problems with concurrency,
and how can concurrency be achieved on a single processor
system. Shared data and problems that can arise.

ô#ämå�ã1ñkämé�ð�ã�ë	õ

ï

è�ö‹÷	ð�ã/ämç�ø ù

·
A brief discussion on the different types of distributed system, how
they work and compare with each other. Distributed objects and
why they would be useful.

ú�á�ë ûmõ�ë�â�åæâ�ñ�è	ð�ç�õ

ï•üIý�ü�þ ÿ	ÿ

·
A description of the parts of the COBOS "idea" that have not been
included in the project, to give an overall view of the ideas.

�

�������	��
	�	��	�������	��������������������� ��!"�	#	!

$%
��	!&�(')���*��+-,.�	�	!"/

This seems a very simple question, but depending on what "object oriented" language
you subscribe to, you will get different descriptions. But, the basic premise that most
of them seem to follow is of an item that has both attributes and behaviours. These
behaviours (and some of the attributes too) may be common to the class that the
object belongs to, or may be totally unique. Each specific item is called an instance of
the object. To make this a little clearer, here is an example to show how C++, creates
and uses classes and instances.

In definition part of the program, or in a header file:

class buffer{
char data[12];
int head, tail;

public:
buffer(void);
void add(char value);
char remove(void);

};

What has been done is for the class "buffer" to be created. This defines the object type
and what the object can do. The two functions "add" and "remove" are the behaviours
of the object. The third function "buffer" is a very special function that is called by
default when an instance of the object is created. You may notice that the object is
split into two parts separated by the word "public". The parts of the object before the
"public" statement are local to the object and cannot be accessed from outside the
object. while the statements following the "public" are allowed to be accessed from
outside of the object. At this point no actual object exists!

So somewhere in the program:

buffer keyboard, drive;

keyboard.add("w");

What this has done is to create two instances of the "buffer" object, which now can be
used and accessed. The second line would access the "keyboard" instance of the object
and do whatever the "add" behaviour was written to do.

From this very brief view of what objects do, you will be able to see the major features
of what object based systems can offer. The first and most simplest is the reusability of
code and structures. What this means is that the "buffer" structure in the example can
be used in any part of the system, and once it has been tested fully you know it will
work anywhere else. Also use of the same objects in new or extensions of the system
is made easier and less programming (and knowledge) of the system is needed.

In say a payroll application where the employee record is amended directly by the
program it is very easy for simple programming errors to either write to the wrong
entry, or to write the wrong data to different fields. With an object of type employee,

BEng/BSc Final Year Project Report 0 BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

and having a sealed function doing the updates, no other function can get to the data
so only this one function needs to be tested. This improves the security of the systems,
and the reliability.

And the final advantage to using objects is that they help with managing complexity.
That is the programmer that is writing the bank payment system does not need to
know how the employees pay was worked out, what hours was worked, or the format
that these things are stored. The programmer would only need to know the function
name get_pay and have a list of the employees.

With programming languages like C++ the objects that are created are not persistent,
this means that the object itself does not exist after the program has been removed
from the memory of the computer. The data for the instances can be stored in data
files, but these will not be objects and are accessible by any program that has access to
the data. Another problem is that if the program is changed (and the object definition
amended), then it will be likely that a program will need to be written to covert the
data to the new objects format. As the data will be sitting on the drive, there is the
possibility that to make life easier more than one object type can be written to access
the same data, giving rise to problems with inconsistency.

A way to get around all these problems is the idea of persistent objects. The basic
idea is that when a system is being developed, say a payroll system, the business
analyst will define certain object types that the system needs, i.e. the employees. Also a
set of behaviours can also be decided for the objects. So the first thing the applications
team would do, would be to create these objects. The objects now would be totally
free-standing on the system, and applications would just call the behaviours or services
to access the object. This way no application can directly access the data which does
several things: first it cuts down the chances of programmer errors misreading the data
on load. Second, it will heighten security as some data cannot be accessed from
outside the object and applications cannot ever see the data. Finally, the utility that
creates the objects can disallow changes that would invalidate the object, or make
applications that use the object themselves invalid. As objects are free standing it
would be possible to allocate access rights to each instance, so for example, only
certain departments would be able to access individual employees that worked in there
own department.

A feature of object oriented systems is inheritance. This is when an object is made up
from one or more previously created objects. for example, you could create a manager
object that takes the employee object and adds a field for the company car registration.
All the services that the employee object uses are still valid, and a set of services will
need to be added to allow for the access to the company car field.

There are problems with inheritance and persistent objects. The two most important
are:

A) should inheritance be allowed?
Should a change to one object be allowed to affect objects all across the system?
Even thought these object all share similar or even identical behaviours how can

BEng/BSc Final Year Project Report 1 BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

these changes be checked, and how can the effect be monitored? Inheritance could
(in a badly monitored system) add a small element of chaos!

B) how would it be handled?
This seems a silly question, but would an inherited function be included in each
object? would it be done by reference to the base object. If so then the objects no
longer become free-standing and would need both forward and inverse connections.
Then you get possibilities of circular inheritance, where inheritances are gained from
objects that they inherit from. If they where embedded, then you get the problem of
inheritances becoming out of date when the base object has been amended.

The model that I have followed is the one that does not allow for inheritance, it is
simpler to apply and has no awful side affects.

�2�������	�"�������43

Concurrency in computing is about running more than one process at the same time on
the same computer. Most computers are Von neumann type single processor
systems, which mean that they can only run one process stream at a time. This is
against parallel computers that have more than one processor and can run multiple
processes at the same time.

So there are several problems with creating concurrent systems and the most obvious
of these is, "how do you get more than one process to run on the same computer that
only runs one process at a time?". The system will have switch the context, or change
the processors state so that in the middle of executing one process it then starts to
execute another. There are two main methods for achieving this, which are pre-
emptive context switching and the non pre-emptive.

Pre-emptive switching
This where the operating system decides when a task is to be switched and does the
switching without the task knowing anything about the fact that it has been swapped
out. This is the best way for concurrent systems to be designed, as the programmer
needs to know nothing about how and when the task will be switched and the
application is just written as if it runs on its own machine. Examples of true context
switched operating systems are: OS/2, Unix, and most mainframe OS's.

Non pre-emptive context switching
This is where the application decides when it will release control back to the operating
system, so that the next task can run. Technically speaking, non pre-emptive systems
are easier to write as they need less technical knowledge and the switch is made by a
system function. Also the applications must be written into a program structure called
a skeleton, which handles the communication with the operating system. Operating
systems like MS-Windows are non pre-emptive.

The nature of pre-emptive switched OS's make them the natural choice for concurrent
systems, also they avoid the main problems that you get when using non pre-emptive
systems, i.e. if a application fails then the whole system will lock up, and its really up

BEng/BSc Final Year Project Report 5 BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

to the application when it will let go, so that time based scheduling becomes a
problem.
When the context is switched the whole machine state of the old process must be
saved, then the new state of the new process must then be copied in to the machine.
On the 80x86 machines, the hardware has functions to do this and data structures that
are used for loading and saving the states. (if you see appendix A.1: Protected Mode -
there is a description of this). Even with the hardware support the switch is normally
driven off a timer interrupt that interrupts the execution of the processes, and then
does the context switch.

Running more than one process on the same computers causes problems with the
sharing of resources. System data areas such as the memory allocation table may be
accessed at the same time causing problems, for example:

Process 1 Process 2
Freespace

Pointer

read freespace

add 50

write freespace

read freespace

add 100

write freespace

swap

swap

swap

0

100

50

Fig 4.1 Shared Data Clash

As you can see from fig. 4.1, two tasks using the same data area will clash and cause
an inconsistency of data. In the example, both processes will use the same memory
area thinking that they own it. Also, that the memory freespace pointer will now be
wrong and will cause a third attempt to allocate memory to clash with the first tasks
allocation.

This can be avoided by using mutual exclusion to restrict access to the shared areas.
There are several methods for doing this, but the simplest is the binary semaphore.
Each task that needs to use the semaphore has to wait for it to become free, and when
it has finished with it, it will signal the semaphore. You can use a binary semaphore to
solve the above problem.

semaphore

semaphore

semaphore

Process 1

Process 2

wait

signal

wait

signal

Freespace
pointer

150

100

Fig 4.2 Semaphore usage

BEng/BSc Final Year Project Report 6 BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

Also, another problem when running more than one process on a single system is the
sharing of resources. If one process "grabs" the disk drive for the whole of its run,
then all other processes that need to use the drive cannot, and will have to wait for the
process that has grabbed the drive to finish. This can be avoided by making the device
independent from the applications. This is achieved by using message passing to send
requests to the device, and for the transfer of data to and from the device. Also, each
device will need both a queue to hold the requests that are waiting, and a task that will
service the devices from the data in the queue.

72�('8!9�"�:+���!"�	�;�2��<>=	�4!?�.���

This where two or more pieces of software share data or information with each other.
These maybe on the same system. There are many ways of achieving this, but the three
most common, are:

Co-operating Applications
These are mostly used in word processing and desk top publishing applications. The
operating system, (or controlling application) provides a set of functions to allow one
application to embed data from another application into itself. For the data to be used
by the primary application (the application that has the data embedded into itself) the
secondary application (or a subset of itself) that created the data that was embedded
will have to be called by the primary application. See fig 4.3.

Primary Application

link

Secondary Application

@�A4BCBED4FHGID4J�K

BED	LNMEO�BPD4FQGQD4J4K

Fig 4.3 Co-operating Applications

This sort of system is used by Microsoft's OLE (Object Linking and Embedding) in its
range of MS-Windows Operating systems, and the in the OSF's OpenDoc
specification. All the diagrams in this report where drawn using VISIO Express which
is the secondary application, and the text was entered into MS-Works, which was the
primary application used for creating this report.

Client Server Applications
This method allows for some independence of data. There are two types of
applications, CLIENTS and SERVERS. Client applications may request information
or services from servers that maybe on the same system or on a system on the other
side of the world. Server applications will action the services or create/locate the data
from its local system.

BEng/BSc Final Year Project Report R BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

Data

Data

User

User

User

Client

Client

Client Server

Computer
system

Computer
system

request

request

request

SQLTJ&U4V U&WYXTLTK8MPO[Z?\]K8^:_`K8^�acbda9OK8e

A client would be something like a bank tellers screen. When a request to deposit
money in an account is made, the client would send the request to the server (which
would be most likely in a regional office) which then would service the request and
then reply to the client that it as been done. Client and Servers are normally designed
together as part of the same application. Any amendment to either the client or the
server, may need the other servers or clients to be rebuilt.

Distributed Objects
This is an extension of object oriented programming, and there are two variations of
the theme. The first is similar to the client / server model and relies on a system
function call the Object Request Broker to allow access from other applications to the
objects. The objects themselves are wrapped up together to make a server.

Application

Fig 4.5 Distributed Objects

Object Request Broker

object objectobject object objectobject object

f`g]hjiIg]h f`g]hjiIg]hf`g]hjiIg]h

object
request

Computer System

The Application may or may not be
on the same computer system as
the Object request Broker

BEng/BSc Final Year Project Report kml BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

Middleware specifications like COBRA1 are written like this. See [otte 96] for a
better description of how the ORB and the server structures work.

The second type are the free standing objects. Where a call is made directly to the
objects service, so there is no need for having servers to control the access. But there
will still need to be a controlling system service that will load and close objects on
need. With this type of system amendments made to one object will only affect the
single object. Also the data for the object will be directly tied to the object's services
and will not be loaded from a file. This makes objects and the data totally separate
from the applications and can be designed separately. COBOS is designed to be of this
type.

��
4�on.�	�	�	')�����������;�2pq�rp�s

The basic idea for the COBOS system is to get away from the COBRA model (see fig
4.5), where the objects are supported by a server program that controls the access to
the object. The objects in this model are not "truly" independent as the server program
holds the objects together, and when one object in the server is amended then the
whole server will need to be rebuilt.

Another one of the ideas for the system is to allow for objects and applications to be
distributed across multiple processors, and allow for the applications to be executed
across multiple processors. The system will also load balance the processor tasks
across the processors that have been connected together in a process group to act as a
single computer.

The system divides into seven specific sub-systems, the functional interaction can be
seen in fig 4.6. It may be noted that only three of these sub systems make up the
COBOS final year project.

Kernel

Object
Control
System

Loader

tvu�wyx{z}|•~�€‚•2ƒ�„

Network
Gateway

Load
Balancer

Object
Builder

System
Manager

Fig 4.6 COBOS system functions

1COBRA stands for Common Object Request Broker Architecture, and is an open specification, that
has been designed by the OMG.

BEng/BSc Final Year Project Report k	k BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

The three parts of the overall system that make up the final year project will be
described fully in the technical approach chapter. what follows is a brief description of
the other four sub-systems.

Object Builder

The object builder would be a system application that would compile the source code
for the objects and create the base object structures. As objects are totally free
standing the objects will not need to be written in the same language so objects that do
mathematical functions could be written in FORTRAN, where as artificial intelligence
or knowledge based objects/applications could be written in LISP or smalltalk.

So the object builder would be an application that could call the different compilers as
needed. This would be driven by the source code itself which would contain as its
header information that language (and possibly version) that it is written in.

It may be noted that applications in this system cannot create objects themselves, but
can only create instances of objects that already exist on the system.

System Manager

The system manager would be the user interface function and would have the
responsibility for controlling the logging on and off of the users. It would also be the
application that would both load and close applications, and the system itself.

Load Balancer

With a process group a set of computers are grouped together to make a virtual
computer, that is to be able to run the same application across the group of computers.
But to do this effectively if one computer is overloaded, it will make the application
run slowly. So if the load could be spread evenly across the group it would make the
system more efficient. This is the job of the load balancer. It will communicate with the
other processors in the group, find out which ones have spare capacity and shift tasks
between the processors to even out the balance.

This also creates a minor problem, if one of the computers is of a slower, then an even
spread of the workload would not be advantageous. So each processors would have
an number of available slots set up so to regulate the number of tasks that it is to run.
Each processor in the group would have a local list of the other processors, and the
availability at last check of slots. The idea for this so that priority for slot requests can
be given to the least loaded processor first.

Network Gateway

This task would control the access to the network for the processor that it is running
on. Also as part of its responsibility it would handle the interprocess message passing
for objects and items that are spread across the process group. The communication
between applications and objects, even when they are spread across the process group

BEng/BSc Final Year Project Report km… BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

should be transparent to the application. So the message passing parts of the kernel
will send messages to the gateway, as if it was the target itself. Then the gateway
would communicate this to the gateway on the target machine, which would then pass
it on the real target.

The Network Gateway, the Object Control System and the Load Balancer make the
system able the run across multiple processors. The kernel version used for the project
does not have the global realm search functions that would be needed for loading
objects on remote processors. This would need the network gateway to be written for
it to be tested, and this is outside the scope of this project. But the process group
would look like (see fig 4.7).

Network
Gateway

Node List Object
Control
System

Load
Balancer

Task ListProcess slots
Loaded object

Table

NODE

NODENODE

Fig 4.7 Process group and inner node links

The final area which needs to be covered here is how would a language access and talk
to an object. Allowing for global realms, which are simply realms that exist on more
than one processor, an object would simply be called by reference. An example call in
COPLE2 :

@COPLE:application!monthly_pay

instance to_pay of department_x:employee_object;

forall to_pay with pay_round = "monthly"
{

$to_pay.calculate_pay;
total_cost := total_cost + $to_pay.money_due;

};

The first line of the code is simply so the compiler knows what type of function is in
the source file. The second line creates a variable to hold the reference to an instance
of the object. This instance cannot be used to hold references to different objects. It
could have been set up to only reference one particular instance of the object.

2 Cobos Object Programming LanguagE, which is a basic language designed for the COBOS system,
a BNF description of the language is included in Appendix F.

BEng/BSc Final Year Project Report km† BEng (Hons) SWERTS 1996 / 97

�������	��
	�	��	�������	��������������������� ��!"�	#	!

The forall statement will search all instances of the object. But using the with part of
the statement it will only action the statement for instances of the object with the field
that matches the condition. In the forall statement the to_pay variable is used with a $
in front of it. What this does is tell the compiler that the instance of the object that the
variable points to, is to be used and not the variable itself. This would translate to:

department_x:employee[to_pay].calculate_pay;

In the above sample of the application, the employee object is used. A simple definition
of this object would be as follows:

@COPLE:object!employee

integer hourly_pay;
integer money_earnt;
integer hours_worked;
string pay_round[12];

void employee(hourly_pay,pay_round);

void calculate_pay()
{

money_earnt := hourly_pay * hours_worked;
};

integer money_due()
{

return money_earnt;
};

The above is a vary simplistic definition of an employee object. There are three
services, employee which is a constructor and defines what variables must be present
in the employee object when it is created. calculate_pay which actually does the work
for the object. With the last service being money_due which simply returns the value
held within the object. The data that makes up the object are defined before the first
service is described, in this case before the employee service. Again, the @ line at the
start of the code will inform the compiler what type of object is to be created.

The above is just a brief overview of the ideas that lay behind what has been designed
and written as the final year project, and should give an idea at what was being aimed
at when the COBOS project was being designed.

BEng/BSc Final Year Project Report k

�

BEng (Hons) SWERTS 1996 / 97

‡‰ˆoŠ�‹•Œ•Ž8Š‘•“’•”—–�–•˜2™�•oŠ�‹

š�›�œ•vž`›�Ÿ8 ¢¡j£m¤�¥�£m••ž`¤�œN¦�£m•Y¡j›¢£§¥�£m••œ(¨4©«ª�¬¢¡j›�£•"®	•?¡¯£8°±Ÿ]©�¥«›�ª�²³œN¡�²´Ÿ]•}²´¤cœµ¡.¡¯£m©2¶8·¯¡�²´œ¸¸

¥�£m••ž`¤�œN¦�£¹²´›�Ÿ`¡y£mŸ]ž`›«ª�¬¢¡¯›�£§•?º¢¦�»¼•"®	•?¡¯£8°%•v¥�ª2¶8·¯¡	²½œ¸(¸�Ÿ8¸••ª«¥�£m••ž`¤�œN¦y£§›�ª�²¾¡j›¢£§•?º� y yª�¤¿¡

¬:º�©�žH¡jœª¢©�•�¡¯›�Ÿd¡�Ÿ8¤c£©�£mž`£m••••Ÿ8¤¯®½¬¯ª¢¤�¡¯›�£§•"®	•?¡¯£8°À²´ª�¤�ÁÂ¶

ÃÅÄ¹ÆÈÇCÉ	Ê"Ë¹ÆÈÌÎÍÐÏÒÑqÓÕÔ8ÑCÊcÓ¹Ö ×ÙØ

·
A High level description of the functions and sub systems of the
COBOS project with a basic description of how they work.

Ú

É4ÔmÄ¹ÇCÉ4ÄÈÔmÌÎÍ*Û½ÓÕÜvÇ¹Ô�ÊÞÝCÉ	Ê"ËÈÆ ×Ùß

·
The description of the data structures of the system, and a
description of how they work, and why they are there.

Ú

Ä¹à¹á

Úâ

ÜYÉmÓÕã³ÜäÛ½ÓÕÜqÇ¹Ô�Ê"ÝCÉ	ÊÞË¹Æ¹Ü åÈå

·
A detailed description of how each of the sub-systems that have
been defined in the Functional Overview work, and how it
interacts with the data structures that are defined in the structural
description.

æÅË¹Ìèç¹ÓÕÔ‰Û´Ó&ÜéÊ"êÈÆ ëèì

·
A basic description of how the COBOS system is loaded, and how
the PC is switched into PMODE. A more detailed description of
how PMODE works will be defined in Appendix: A.

í9Æ¹ÜYÉ4ÌÎÍ9Í�ÓÕÔ‰Û½ÓÕÜéÊÞê¹Æ ë>×

·
Why the installer is needed, what the problems where with the
design of the installer. A description of the MS-DOS file system.

î§ÔmË¹ê¹ÔmÌÈã³ãïÊ"Æ¹êðÉ4ñCÓ

Úâ

Ü�ÉmÓÕã ëÈå

·
How the complexity of the system was managed. The standards
used when writing the code.

×�ò

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

���	ù4÷��9ú���ù�û ü	��
 ö�ÿ�
4ú(ö�

The COBOS project involves the use of the whole of the IBM PC, and it totally
displaces MS-DOS while it is running. To do this it needs several systems to operate
the specific parts of the system. As you can see from fig 5.1, these systems themselves
are subdivided in to sub-systems. Each of these sub-systems have responsibilities for a
specific area of operations. As some of these system are quite complex here is a brief
overview of each system and the sub-systems it contains.

DSK file
finder

initaliser

DOS
return

PMODE
switcher

MDSIO

Memory
Allocation

Block
Device

Video
sub-system

User Input
Exception
Handler

Task Control

Find
Instance

New
Instance

Open
Object

Close
Object

Delete
Instance

����������������� �"!$#&%('�)*#�+(#-,/. 01#

The Loader
Object Control System

The Kernel

The Loader

The area of responsibility is to load the kernel, but to do this it must prepare the IBM
PC for this, and it must also switch the processor mode from real mode, (which is the
mode that MS-DOS runs in), into protected mode which is the native state of the
80386+ processors. There is a more detailed description of how this works in the
technical appendices, as this does get rather complex. The loader has four main sub-
systems:

The DSK file finder·
This has the function of finding the DSK file that COBOS needs for is own file
system. COBOS uses a different method for allocation the disk space and for
referencing data on the disk drive. This method clashes with the MS-DOS file
system, but this clash can be got around by creating a disk file that can be used as a
"virtual disk" so that COBOS can allocate its disk space in its own way without
interfering with the MS-DOS file system. DSK is an abbreviation of disk.

The intialiser·
The major system structures all need their data areas defined, and as the loader is
designed to return the PC back to real mode after the system has been closed, these
data structures need to be compatible with DOS. As the system uses a couple of
devices in a different way from MS-DOS, so this system will change the way that
these devices operate.
 The PMODE switch·

BEng/BSc Final Year Project Report 2 3 BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

The mode of the processor needs to be changed from real to protected mode, but
before that is done the processor also needs certain system registers changed so
that it knows where to find some tables that are needed.

The Real Mode switch·
After the operating system has been exited, this sub system will return the process
and its registers back to the state that MS-DOS requires, which is the protected
mode.

The Kernel

This is the heart of the system, and while the COBOS operating system is running this
system controls the computer. The hardware systems and the peripherals are all
handled by the kernel functions. The kernel will also do the pre-emptive swapping of
the system tasks using the PIT (programmable interval timer) for the context
switching.

The Memory Allocation System·
This system controls the way that COBOS allocates the PC's RAM. It will also
create the selectors and descriptors that are needed for protected mode programs.

The Device Sub-system·
The data devices in the COBOS system have been designed to work as block
devices. This means that the device will only transfer whole blocks. All accesses to
the devices are thought a system function called block request, which has the
parameter of which device that the request is to be sent to. The device sub-system
has the responsibility of controlling how the block devices work, and have the
requests are scheduled. For each device there is an interrupt handler that deals with
the hardware interrupts from the device. Also, there is a device task that actually
controls the transfer.

Task Control·
The main responsibility of this part of the system is the adding and removing of the
tasks from the system, as well as the context switching of the applications that are
running. The actual loading and closing of applications on the system is not part of
the task control sub-system.

Exception Handler·
The exceptions in protected mode need to be handled differently from the way they
are in real mode. Some exceptions can be recovered from and some cant. But for a
protected mode operating system the exception handler will have to be set up as a
system task, so that it has access to the rest of the segments on the system. It will
need the access so that it can close any task or extend any allocation that caused an
error.

User Input·
This is a collection of functions that respond to the keyboard and mouse. It also
includes functions that will redraw and clear the mouse pointer from the screen.

BEng/BSc Final Year Project Report 2�4 BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

Memory
Allocation

Table

MDSIO
Table

Device Table

Object
Table

Loaded Object
Table

Task table

Task Control
Block

Code

TSS

Level 0 Stack

Stack

TCB

Message index

Message Space

Hot Spot
Table

���������657�8���9�"!:!;+(#-,/. 0=<�>?,@>�!(,BA�%DCE,B%(AF.

Object

Service Code

service
description

Device Queue

Device Data

Device Queue

MDSIO Handle

Access Data

ONODE Buffer

Loaded Object

Instance Space
Hot Spot

Graphic or
Virtual Window

MDSIO (Mass Data Structure Input Output) system·
This controls the accesses to the MDSIO objects. The permissions and creating
and deletions of the "file" structures are done by using a set of functions that are
accessible to the tasks and applications at every system level.

The Video Control system·
There are two main responsibilities of the video control system, and they are: firstly
to create and delete the icons and virtual screens that are the basis of the video
system. Secondly, to update the "real" screen from the virtual screens that have
been updated and flagged updated by the applications.

The Object Control system

The control of the objects is done by a small set of functions that are directly
accessible to the tasks. The control and access is metered out by a set of tables that
holds what task is using what object and instance of the object. This system uses the
MDSIO functions to gain access the objects as they are stored on the devices.

G

�9ÿH��÷��I�	ÿ�û�ü1J�ö�K8÷ ÿ‚ú.þL�9ú���ù

The system is based on nine tables that hold the data that the system needs, plus
several system structures that hold the data that specific system objects need. The
connections of the data structures can been seen in fig 5.2.
There are two more tables that are not on the system the IDT and GDT which are

BEng/BSc Final Year Project Report 2�M BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

4

20

16

12
8

�����N���6O"<�.&P9��C&.RQ9>S'�T6.VU(W&,XA/+

d_device_name

2 0

d_queue_segd_handler
d_statusd_Fat (low word)

d_fat (high word)d_fat_buffer
d_fat_block

d_fat_size32

28
24

Record size = 34 bytes

��������� Y[Z\<]!�^6�_Q >�'�T6.`U(W;,BA/+

Record size = 110 bytes

32

2 0

md_owner

md_MDSIO_pos

md_buffer

md_name

md_group

md_realm

md_MDSIO_pos.block

md_type md_lock
md_alloc_num

100

96

64

104
108

system tables, and are defined in the technical section as there are Intel 80386
structures. Note: the square boxes are entries on the tables.

Device Table
The device table is used to hold the reference data for the block devices that are

loaded on the system. It is referenced by the
device number, which will simply be the index
number of the device in the table.
 Fig. 5.3 shows that the table holds two fields
the d_queue_seg and d_handler, that are used
when adding block requests to the devices
queue. The d_status word is used to control
access to the device. The d_device_name is not
used as part of the system as written, but will
be needed when devices are to be found, added
or removed from the system. This would be
part of the system manager.

The set of fields that start with "d_fat" are all to do with the file allocation table of the
device. d_fat_buffer holds the segment that the device uses as its own fat buffer. The
field d_fat points to the sector that holds the fat, it also tells the system what the
devices first block is. d_fat_block holds the current block in the fat buffer. The task
field is d_fat_size which holds the number of blocks that the fat uses.

MDSIO Table
This table holds the information needed when a
MDSIO object is opened for access. While
objects are being deleted or created entries for
them will be inserted into the tables. The
objects are referenced by the index number of
the entry in the table. To know when an entry
in the table is not being used, the owner is
checked to see if it is null (is equal to 0000).

All MDSIO names are 32 bytes long. So the
majority of the record is taken up by the three
names that are associated with each object.
The use of these names will be described when
the MDSIO system is described below.

The two fields md_MDSIO_pos and
md_MDSIO_pos.block are used to locate the
ONODE of the object. The md_buffer holds
the selector for the segment that is used as the
objects handle, and the md_alloc_num holds
the reference to the malloc table for the handle.
The handle selector is used by some MDSIO
functions to access an opened object. The
md_type and md_lock fields describe the access
that is being made to the object.

BEng/BSc Final Year Project Report 2�a BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

4

���������6�$Q9>?#;bcQ9>�'�T .`U(W;,BA/+

2 0

Back_linkForward_link

TCB_segTSS_seg

Record size = 8 bytes

16

12
8

�����N����d:�e'�f�.(CE,�Q >�'�T6.`U(W;,BA/+

2 0
o_MDSIO_numo_connections

o_block_number4

Record size = 25 bytes

o_service_code
o_inst_size

o_buffer

20

24

o_service_desc

o_last_inst

o_first_inst

o_permis

8

�����N����ghZi. 0kj�A/+hl�T�T6j�C;>?,B�mjSW

2 0
m_size

4

Record size = 12 bytes

m_selector m_owner

m_address

Task Table
This table holds all the applications that are loaded to run on the system. Even if the

task is suspended, they will still exist in this
table. This structure is used to select the next
task in a round robin fashion. The two links
(forward and back), are used by the task
switcher to find the next task in the list.

The TCB_seg holds a selector that points to
the Task_Control_Block structure which holds

all the information that the system needs to know about the task, and the current state
of the task. The TSS_seg field holds a selector to the Intel 80386
Task_Switch_Segment, which holds the current CPU state of the task. This is used to
actually switch the tasks. This structure is basically the structure that drives the
operating system.

Object Table
The object table is referenced by the index number of the entries. It holds the details of

an object that is being accessed by an
application.
Most of the fields are references needed to
access the instances of the object. The three
fields of most interest are the o_MDSIO_num
which holds the index number of the objects
MDSIO entry. All object are MDSIO data
objects and must be opened by using the
MDSIO functions.

The o_service_desc is the selector that points to the segment that holds the service
header information so that applications can find the references to the services in the
service code area. o_service_code is the selector that points to the segment that holds
the actual code for the services.

Memory Allocation Table
The memory allocation table has three types of entries. Entries with no size are free
entry and can be filled. The entries with a size but with a null owner, are free space

records that hold the areas of the RAM that
have not been allocated by the system. The
final type are allocations with both size and
owners, these are memory allocations that are
in use.
The m_address field holds the linear memory
address of the start of the allocation. The

m_selector is the GDT table entry for the allocation, and is the selector that is created
so that the allocation can be accessed by the application/system function that needs it.
The Loaded Object Table
The loaded object entry, ties the applications use of an object and its instances to the
object itself.

BEng/BSc Final Year Project Report n�o BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

4

����������pNqIjL>�rL.(rs�e'Lf�.(CE,�U(W&,XA/+

2 0

lo_object_numlo_app_num

lo_inst_numlo_inst_space

Record size = 8 bytes

hs_ownerhs_top_x

hs_top_yhs_bot_x

16

12
8

����������tNu�j?,�!�vwj?,�Q9>�'�T .`U(W;,BA/+

2 0

4

Record size = 36 bytes

hs_max_x
hs_rel_x

hs_bot_y

20

24

hs_max_y
o_first_insths_rel_yhs_task

hs_mess_lenhs_message (low)

hs_message (high)hs_mess_seg

hs_graph_seghs_status
hs_graphic

hs_chain34

32

28

The lo_app_num field points the application
that owns the entry. The lo_object_num, is the
object table index for the object that this item
references. The lo_inst_num is the instance
index reference of the instance of the data that
is currently in the instance space buffer. The
lo_inst_space field holds the selector that
points to the segment that holds the instance
space buffer.

The Hot Spot Table
The hot spot table holds the information on all the screen elements (with exception of
the mouse). It is called the hot spot table because all graphic elements can be click

with the mouse causing the system to take
some action, i.e. that area of the screen then
becomes "hot".

The table allows for two types of object to be
in the table. The first type is the virtual screen,
this is selected by a bit in the status word.
What this type is simply a window that the
applications can use to display their data.

The second type of entry is the icon, and this is
also selected by a bit in the status byte. Most of
the other entries in the table are used to

position the screen on the real screen, and to locate the start point of the window
within the virtual window itself. (This will be describes in the section on the video
system).

The hot spot can cause the system to do one of two things when the mouse clicks
inside the hot spot. Either, it can send the location of the mouse pointer relative to the
virtual window, or it can send the message that is set up when the hot spot is created
to the destination task. the field hs_task is the task that all messages are sent to.

The System Data Area

This structure is not shown in fig 5.2, as it holds the location of all the tables and the
sizes of them. Also it holds other system data, for example the character maps. This
data area is used to synchronise the usage for the system tables as it has a system
semaphore area which all applications that need to amend the data area need to assign.
This is also the area where the current task number, and the current TCB pointers is
stored.

G

��x

Gzy

K �"öz{"K|J�ö�K8÷ ÿ‚ú.þL�9ú���ù�K

BEng/BSc Final Year Project Report n}2 BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

The Object Control System and the kernel divide into several sub-systems as described
in the functional overview. What follows is a more detailed description of how these
sub-systems actually work, and how they interact with the data structures that have
been described. This section has been written to avoid using any assembler code, as all
the source for the systems are included on the source disk. Also you will find both a
Yordon formatted specification in appendix D, and the initial SDS-3 Design in
appendix F.

Memory Allocation

The basic design idea behind the memory allocation system, is to allow for dynamic
memory allocation. To do this an application needs to be able to both request and
release memory when it wants. The way COBOS handles dynamic memory allocation
is to use the "memory allocation" or malloc table that holds both the free space and
the allocations that have been made to applications or system tasks.

During initialisation of the system, the malloc table is set up with one freespace record
that holds the entire memory area that is available to the COBOS system. When a
memory allocation needs to be made, the malloc table is searched to find an entry that
either matches or has more memory than the call needs. If there is a freespace record
that matches the request size then is allocated to the calling task. If the record is bigger
than the request, it is allocated to the task, but only the size requested. A new
freespace record is created with the size of the remaining memory left over. If there is
not a allocation that fits the request, then the memory is full.

Now, when allocations are released you get the problem of how to collect the
"garbage", these are the bits of the memory that either are the leftovers from the
allocations, or the freed memory allocations. These need to be collected together so
that the memory is not wasted and fragmented. There are many ways to do this and for
a better discussion in garbage collection, see [jone 97]. In the COBOS system a very
simple garbage collection scheme is used. What it does is to check whenever an
allocation is released, it searches the whole malloc table to see if any of the free
allocations are concurrent. If so the size of the higher allocation in memory is added to
the lower allocation, and the higher allocation is deleted. A more proactive scheme
could be used as the system is segmented, and the allocations can be moved without
causing any problems with the applications.

As the system uses the segmentation of the 80x86 processors, for each allocation that
is created a descriptor must be created in the GDT table. When the allocation is
released then the descriptor is also removed from the table.

Block Device

The block device system is probably the most complicated system. It is based around
two tables, the systems device table and a device queue that is local to the device.
Synchronisation of the tasks is done using three semaphores, the systems device table
semaphore, and two that are local to the device. The devices all run as tasks in the task
list, which are activate on need tasks. This means that these tasks are suspended

BEng/BSc Final Year Project Report n�n BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

when they are not needed. So the devices task will only be running when there is a
transfer to start, or a block to transfer. Fig 5.10 shows how these elements fit together.

Device
task

Interrupt
Handler

activate

int

Block
Device

Device active flag

check

set
activate

clearMessage Queue

remove entry

add entry

Task Suspend flag

suspend

Device Queue

Device queue flag

signal &
wait

signal &
wait

�����������;~s<8.&P9��C;.h#•+€#I,/. 0•��j�W€WD.(CE,B� P9�6,6+

The easiest of these functions to describe is the interrupt handler, this function is
activated by the hardware device causing an interrupt. Its purpose is to clear the tasks
suspend bit in the task's Task Control Block (TCB), so when the task is next
scheduled to run it will be run. (see the section on the task system for more details).

The block request function is slightly more complicated, but all it does is use the
device queue semaphore to make sure it has exclusive access to the message queue,
for the device's requests. Then it adds the request to the device list, then releases the
device queue. Then it checks to see if the device is already active, if not it sets the
devices active bit, and unsuspends the task. Otherwise it will just exit.

In its simplest form the device task reads a request from the local device queue and
actions it. But, it is a bit more complicated than that. To keep the tasks flowing, and
not to not have the device driver holding up the system, while it does the transfer. The
device task runs in the applications queue, and suspends itself after every block is read.
It is unsuspended by the interrupt handler (as described above), so it can then action
the transfer. The device task is pre-emptively swapped in the same way as any other
task on the system. How tasks are swapped will be described later in the "task control"
section.

Why all this level of complexity? The device driver could be a lot simpler, i.e. if you
follow the DOS method of basically making the system wait while the transfer is in
progress. The DOS device system is a lot simpler to write and is less prone to failure
and deadlocks, than the one used for the COBOS system. But the answer to the
question is in the above statement, first only one application can use a device at any
one time, and a lot of processor time will be wasted while the device seeks the location
on the drive and reads the data. With the system described above, more than one
application can send a request to the drive, and the system can carry on processing the
applications that are not waiting for the devices I/O.

BEng/BSc Final Year Project Report n�‚ BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

Another feature of this device architecture is that on completion (or failure) of a
request the device sends a message to the application with the result of its request.
What this does is to separate the I/O completely from the application. So after an
application sends a block request, it can carry on processing, while periodically
checking its own message queue for the response from the block device that tells the
application if the request worked or failed. This means that the "busy bee" which you
get when using MS-Windows and other operating systems, that tells you the system is
busy and can't be used at the moment. Will never be needed because the system will
never be in a state where one applications request stops all other applications from
doing other things.

Task Control

Task switching on the 80x86 series processors is fairly complicated, so here is just an
overview of how the task switcher works form the programs point of view, ignoring
how the switch is actually done (see appendix A - for a detailed description).

The task system has two separate areas of responsibility, first to control access to the
tasks, and secondly to do the task swapping. Two separate structures are used to do
this, the task list, (see fig 5.3), and the Task Control Block (TCB). The TCB holds all
the task specific data that the system needs to know about the task, as well as the
indexes for the messaging system, and the message space for the messages.

A status word in the TCB is used to by the system the regulate access to the task and
the TCB. Each of the system functions that needs to access the TCB must inspect this
word before accessing the TCB. Any amendments to the TCB, like adding a message
to the message queue, must set the in_use bit before the TCB is amended, and clear it
afterwards. The task switcher uses the exception and suspend bits to check if the task
is allowed to be swapped in.

The task switcher uses a system structure called the Task Switch Segment (TSS), this
is used by the system to load and save the state of the task during task switching. The
task switcher is a basic round robin scheduler that will switch to the next task that is
available. The next task to be loaded is pointed to by the forward_pointer field in the
task_list, and if the exception or suspend bits are set the task is ignored and the next
task in the queue is checked. If there are no tasks that are available to run, the task
switcher will call an idle/halt loop which simply does nothing until the next call to the
task switcher.

The task switcher is called by either an interrupt caused by the system's timer, or by a
software interrupt called by a running task. The task that is being swapped in is
allocated a time slot (of about 1/40th of a second), but it can swap itself out sooner by
calling the swap function.

By using a simple round robin scheduler it save on the system overhead that having a
more sophisticated scheduler would cause.

To add an application to the system, first a call to create_TCB, has to be made. This
will create the TCB structure and the TSS structures that the applications need. The

BEng/BSc Final Year Project Report n�ƒ BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

„

~ …�~€†�‡NjSA•���S�ˆW

„

0k>�‰‹Š�‰�…/0k>?‰EŠ�+(†

„

AF.�T Š�‰D…�AF.�T Šw+(†

„

AŒ.?T Š�‰$•"'wj?,ŽŠ�‰:)z,@jSv(Š�‰�…LAF.�T Š�‰:•"'wj�,ŽŠ�‰$)]'�j�,ŽŠw+€†

Area of the virtual
screen

displayed on the real
screen

This area is
not displayed

�•�m�������(�‘•���A’,B%D>“TE”V��WDr�j€”R#RT6>(+9jS%;,

data and code segments will need to be added to both the TCB and the TSS, these are
not created by the system call so that shared data and code can be inserted rather than
each application only being able to use the areas created for them. After all this has
been set up, a call to add_task will add the application to the task list, and finally the
suspend bit will need to be cleared, as create_TCB suspends the new TCB when it
creates it. To remove an application, delete_task, then delete_TCB need to be called.
The sequence for creating a task is:

call create_TCB
call add_task
load data into data segment
load code into code segment
update TCB and TSS with the code and data segments
set code segments cpl (see technical appendix)
clear the suspend bit

The TCB is used when the tasks pass messages between themselves. Two functions
send_message and read_message are used to do this. The message queue is made up
of four pointers, two to control the index, and two to control the message space, and
an index and a message space. The index is a standard FIFO queue see [thom90 -
p201], with entries that point into the message space. The message space also works
in a similar way to the index, except that the head and tail are only used as free space
markers, and to know when the space is full.

You may have noticed that the TSS holds similar data to the TCB, and the TSS can be
extended to allow it to hold more data. This structure could have been used to the
hold all the data that is in the TCB, but due to the limitations that the processor set on
the TSS's, it was thought better to separate the COBOS task data in a simple data
segment.

Video subsystem

The video system is based on two types of screen furniture. The icon which is a small
graphic that is displayed on the screen, and the virtual screen, which is used by the
applications to display data. Both these structures are stored in the hot spot table, and
the screen flag is used to tell them apart. With the icon only the top_x, top_y, bot_x
and bot_y fields are used when displaying the icon.

BEng/BSc Final Year Project Report n

ó

BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

Realm

realm

Realm
Table

Object
Application

File File

Application

Object

Code Onode

Instance
Onode

Service Onode

Source Onode

Data Onode

�����N�����;5_<�>?,@>�!(,BA�%DCE,B%(AF.�#1�8j�W(WD.€CE,B��j�W;#

Source Onode

With the virtual screen, the variables top_x, top_y, bot_x and bot_y control the
position of the virtual screen on the real screen. The other position variables are there
to allow the window to pan. This could be used by say an architecture application
using a massive virtual screen to show the whole of a buildings structural design, but
having a user application that controls what area of the screen can be seen by the user.
The point of this that the application need not know anything about the structure of
the machine that is in use, and only what size screen that it needs. Again this makes the
video system independent from the application. The variable rel_x, rel_y are when the
display area starts inside the virtual window, and the fields max_x, max_y are the
maximum size of the window. max_x, max_y are also used by the system to work out
where each line of the display starts.

The video task itself is a task that is scheduled as with all the other applications, and
searches down the list of hot spots, and depending on the state of the flags in the hot
spot status word (see fig 5.9) either, draws or clears the hot spot. The hots spots are
linked together using the hs_chain field with the top most screen being the top of the
chain. A pointer in the system segment points to the top hot spot in the hot spot chain.

The screens only allow for 16 colours, which are stored in pixel order, i.e. the first
four bits of the screen area are pixel 1, and the next four are pixel 2, etc... This means,
again that the applications need know nothing about how the PC's video system
works, and it would be down to the video task to convert the data from this format to
the one that the card needs.

MDSIO system

COBOS uses a different file structure from the one used by MS-DOS. It is based on
the devices being able to allocate a single block to a request, rather as with MS-DOS
only being able to allocate clusters of blocks. Also logical organisation of the data
structures is very different from the one used by MS-DOS. See fig 5.12 for the layout.

The realm table is similar to the root directory that operating systems like MS-DOS
and UNIX use, except that the only type of object that it can hold is the realm, also

BEng/BSc Final Year Project Report nL3 BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

this is the only place that the realm's can exist.

The realm is similar to the ordinary directory type structure, except that it is flat and
there are no sub-realms as with the directory you can have sub-directories. The realm
holds the references to the data objects themselves. There are three object types that
are allowed to exist in the realm, and these are the object, the application and the data
file.

The data file is the simplest of these, and is similar to the standard data file as found on
most operating systems. The application comes in two parts, the source code which is
a simple flat file, and the object code for the application. The object comes in three
parts the source, the object and the space for the instances of the object. The realm
entry holds the starting block of the onode for each of these parts.

The COBOS disk is based on a bit fat where the index number of each bit in the fat
represents a block on the disk. All the data structures are based around the onode.
This structure holds the object specific data, plus a list of all the file blocks the have
been allocated to the object. Fig 5.13 shows the physical layout of the ONODE and
the fat. The realm itself also has an onode.

FAT

next blockprevious blocknext blockprevious block -1-1

block allocation

Header Information

Block List
Block List

�����������;O•!(,BA•%�CE,B%(AF.$j?–�,B—D.:��˜1��<�U�>SWDr�,X—�.N�-l�Q

As well the realm the MDSIO system has a logical structure called the group this is
similar to the UNIX group and allows for objects to be used across realms, so that
objects can be used by other realms than the owner without having to give global
permissions to the object. This leads on to the area of permissions. COBOS uses a
similar permissions structure to UNIX, with objects being able to have global
permissions, where all objects in the system can access the object. group permissions,
where the objects that belong the group can have access to the object. And finally local
permissions, where only applications that belong to the same realm as the object can
have access. It needs to be pointed to that the group is a completely logical structure
and has no physical structure on the disk, the name of the group that an object belongs
to is stored in the onode for the object.
On the primary block device for the system there is a realm called the node, is this
realm all the system applications and objects will be stored. This is the default realm of
the system.

BEng/BSc Final Year Project Report nz4 BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

The MDSIO system is made up of seven functions, two are used to control the realms,
and the other five are used for accessing and maintaining the MDSIO objects. The
object control functions use a structure called the handle for controlling access to the
object. This structure is created by the open_MDSIO_object and is deleted when the
object is closed. The handle holds all the information that application needs to know
when accessing the opened object, and is a segment which is referenced by its selector.
The MDSIO functions themselves are listed in the API appendix.

User Input

The keyboard and the mouse are the two devices that the system basically uses for
user input, others can be added as the input system again is independent of the devices
themselves and the input system uses task messaging to pass commands from the
devices to the tasks.

Keyboard
Handler

Mouse
Handler

Keyboard
post box

Mouse
post box

message

messageinterrupt

interrupt

send
message

search postboxes

postbox task

�����������EYs™8#š. AzQ >�#&b;#1›\,B—D.�œ;j�#-,B'wj�‰

As the devices use interrupts, this causes a problem as to send a message a function
needs to "wait" for the semaphore on the TCB. But, an interrupt cannot wait, as it has
sole control of the system and the TCB will never become free. So, to get around this
problem an additional system task called the postbox has been added to the system. All
this function does is to take any messages from device specific message areas, and
send the messages to the task specified by the device. This task is an activate-on-need
task and when a task needs to send a message it will unsuspend the task.

The keyboard task checks the system segment to find the user_task and this is where it
will send the keyboard message, if the task has its keyboard bit set in its TCB. For the
mouse, it uses the hot spot table to check to see if any keypresses that are made where
inside a hot spot. If so, depending on the bits set in the hot spots status word, the
mouse driver will either send its current location and button state to the task, or it will
set the message that has been set up to be sent in the hot spot table.

When the mouse is clicked inside a user screen the system converts the mouse position
into a position that is relative to the applications window. This is done so that the task
will not need to know where its screen is on the real screen. The conversion uses the
following equation to convert between the two: (see fig 5.11)

BEng/BSc Final Year Project Report n�M BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

user_relative_x = mouse_x - top_x + rel_x
user_relative_y = mouse_y - top_y + rel_y

Exception Handler

The exception handler reports on the system generated interrupts, these are interrupts
between int 00h and int 11h (17 dec). These are caused by such things as tasks trying
to access segments of the wrong type or of a greater privilege level. These interrupts
fall into two categories fatal and non-fatal. With the fatal exceptions the task that
caused the exception is closed down. With the non-fatal exceptions control is returned
to the task.

So what the exception handler does is, display the CPU state of the failing task, set the
exception bit of the task. It then waits for the user to respond to the message, if the
exception was fatal then the handler will close the task. If not it will return control to
the task.

The Object Control System (OCS)

The OCS is designed to control the access to the objects that are on the system. The
objects are all MDSIO objects and are accessed thought this system. The
application(s) that open the object have no direct access to either the object or the
services that they use. The only way that applications can use objects is by using calls
to the services. Also, as the objects are independent of the applications, there needs to
be a way of checking that the object has not changed since the application was built.
So when an object is loaded it also loads the parameter definitions as well. See fig 5.15
for the layout of the object as opened. Also it is the responsibility of the application
itself to check the format of the service.

The service code is called by the application using a direct far call, which will set the
processor pointing to the code segment that the services are in, then the target of the
call will be a near jump to the actual service code itself. This way the position of the
services within the service code segment is not important and can be moved if needed,
the only thing that needs to be the same in the service number.

The instances are indexed by a reference number which is made up of the block that
the object is in, and the index of the instance within the block. The instances of the
object may be accessed either directly by using the reference number, or sequentially
using the references to work out the next instance of the object. The object instances
use two levels of buffering, the object table itself has a block buffer, and a buffer for
the instance that the application is to use and the service has access to.

As said before the instance is independent from the application. So, the application
does not have any direct access to the instance space, and any call to a service must
pass the selector of the instance space to the service call as the first parameter. This
would be standard. With all objects there are a few default services which are, next,
previous, locate, new and delete. These services are provided by the OCS itself and

BEng/BSc Final Year Project Report n�a BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

parameter

parmeter

Object Services

MDSIO table entry

parameter

parmeter

parmeter

service description

service description
service
index

service
index

Service Code

Service Code

Object Service Descriptions

�����N�?�ˆ�&�$!9. ABP �mC&.R!(,BA�%DC‹,X%€AŒ.

are not actually part of the object. There is no need for an "update" service as the
service call will tell the system if the instance has been amended.

The loaded object table is also used for instance locking, that is when a instance is in
use by another application then no other applications can use the same instance. This is
done by a simple search thought the instance table to check if the instance that is
being requested has already been used.

•��	û�ž	ö�ÿVJ�ö�Kmú/Ÿ�ù

The loader simply has to find where the COBOS DSK file is, set the memory locations
for the systems default tables then do the PMODE switch. After the system has closed
the loader will also set the processor state so that it can then return back to DOS.

The loader uses the standard BIOS and DOS interrupt calls to access the disk, and
follow the MS-DOS disk structure to get the cluster number of the DSK file. It
converts this into the logical block number that COBOS uses, using the following
equation:

logical_block = cluster_number * cluster_size + fat_offset

COBOS assumes that the COBOS fat starts on the block of the device. It also assumes
the realm table starts on the first block right after the COBOS fat. (more details on
how the DOS disk system works is given in the installer description). What the loader
has to do next is to create the GDT and IDT entries. This uses the MASM selector
numbers to work out the linear address of these areas then places them into a memory
area reserved for the GDT with the limits already set. This is easier to see from the
code in the COBOS.ASM file.

BEng/BSc Final Year Project Report ‚�o BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

The exceptions in real mode take up the first 17 interrupts in the Interrupt
Descriptor Table (IDT), but DOS uses some of these interrupts for other things and it
also overlays some of the hardware interrupts in this space. So the loader has to
reprogram the PIC so that it starts at int 20h (32 dec), which is not used by the PC and
is the last interrupt that is reserved by Intel. (see the technical appendix).

The final thing that this function has to do to load the system is to switch the PC into
PMODE. This is done in a number of steps:

Load the GDT and IDT with there sizes·
Set the PMODE bit in the control register·
Set task register to point to the default TSS - a task switch must copy the·
processor state so needs a valid TSS to copy it to.
Do a near jump to clear the prefetcher·
Far jump to the TSS that has been set up with the Kernel in it.·

For the return to DOS the loader has to load some 16bit code segments which have
limits of FFFFFh (1048575 dec), which is all that DOS likes to allow. The DOS IDT3

needs to be reloaded.

ú:ù�K �"û�ü:üö�ÿVJ�ö�Kmú/Ÿ�ù

The installer function finds the space for the COBOS DSK file, allocates the space in
the DOS fat, then creates a file entry in the DOS root directory for the file.

There are several problems with this scheme, the first is to do with the different
versions of DOS. Older versions (before v4.0) use a 12bit fat, which the newer
versions still support, where the newer versions all use a 16bit fat. Detecting the
difference between these two fat types is simple as the type of fat that is being used is
stored in the boot record. But, writing code that handles both types of fat makes the
installer function more complicated. The installer that has been written for COBOS
does not work on a 12bit fat.

The next problem is that COBOS uses direct block accesses, that is all references are
directed a the actual block, so if the DSK file is moved by any of the DOS defrag or
disk efficiency programs, the COBOS applications and file system will be corrupted,
and may corrupt other DOS files. This problem is got around by marking the file as
system and hidden, which will stop these applications from moving the file around.
This is only a convention that DOS uses and these applications can happily move the
file, but the should not.
The installer also creates the COBOS FAT and it places the first block of the realm
table in the DSK file. It will also place the NODE in the realm table.

 yÿ���Ÿ�ÿ�ûz{¡{>ú.ùLŸ¢�9ø�ö

G“y

K �"öz{

3 DOS documentation does not mention that the real mode DOS uses the IDT for its interrupts, but on
all 80x86's after 80286, real mode DOS uses the IDT to find its interrupts. The problem with this is
that some code directly accesses the area 00h-400h which has traditionally been the DOS interrupt
area. So if the IDT is changed or not properly restored, DOS will fail.

BEng/BSc Final Year Project Report ‚}2 BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

This project is fairly complex structurally, plus is it is written in assembler which
obviously adds another level of complexity. To manage all this complexity a scheme
has been followed to make the writing easier.

Using one of the good features of the MASM assembler format, all the structures used
by the system functions have been created in the cobosh.asm file and is included in all
code. This allows for consistency across all functions.

All functions use the same calling structure and all of the major functions save all the
system registers that they use, and restore them on exit. Another thing that all the
major functions do, is to set up call frames, using the enter and leave instructions. See
[tane 90 - p303] for a detailed description of why call frames are used. The format of
the of the functions is as follows:

comment #===

Function Name
 (is it an API function)

 Description of what the function does.

 parameter:
List of parameters is reverse
push order

 returns:
What values are returned and
how they are returned

#===

now the parameter references to the stack

now any local variables

definitions of any error codes used in the function

procedure_name: enter local stack space, 0
push the registers that need saving

*** the functions code ***

pop the registers that need saving
leave
ret or retf

This format is used for all functions in the system. Also all labels used in the system
are prefixed with an abbreviation of where they belong to. If this is a system structure
like the device list the it will be prefixed with "d_", if it belongs to a function like
send_message, the prefix will be "sm_". All prefixes are unique, this causes some of
the to vary slightly as otherwise they would clash.

The way the system was programmed was to write all the functions that directly used
a structure, then test them on the structure making sure that they worked before
moving on the next structure. This meant that the system was coded from the bottom
up and the upper layer functions could use functions and sub-systems that it could rely
on. This was important because writing code for PMODE, there are not any debuggers

BEng/BSc Final Year Project Report ‚�n BEng (Hons) SWERTS 1996 / 97

ó�ô�õ�ö	÷�ø	ù�ú(÷	û�ü�ýÙþ	þ	ÿ��	û	÷ ø

that work correctly. So debugging is done by the old fashioned trial and error, and
using displays to the screen as markers so you know where the programs reached
before it fell over. This is very slow, and if the problem could be in one of many sub-
systems then this would be impossible to do.

BEng/BSc Final Year Project Report ‚�‚ BEng (Hons) SWERTS 1996 / 97

£¥¤•¦¨§=©Dª�¦ «¬¯® °²±(¦´³•§¯¦µ¦¯±(¶¬

·¹¸“º/»k¼€¸z½9¾“¿*À�Á�ÂzÀ�½ Ã/»�Äiº�¿*¸e¿’¸“ÀsÁ�À�»-ÅÆÃ�¿*»cÇzÈz¿*¸zÀ"¾ÆÁ�Ç�É�À�¼�¿HÊ

ËsÌ�ÍVÎVÌ Ï`ÐcÐ Ñ$Ò

·
A general round up of how far the project got. How much code has
been written, and what systems have been implemented.

ËsÌ�ÍVÎVÌ�Ó[ÔÕÔ²ÖH×VÎ ÓV×:Ø ÙiÏNÐRÖHÎV× ËsÌ�ÍVÚ�Û•ÏNÔÕÐ Ñ$Ü

·
Things that was missed in the design, this that was wrong in the
designs, problems that where discovered during the writing and
testing stages.

Ù\ÖHÐkÝVÞVÐcÐRÖHÍV× Ñ$ß

·

Ñ:à

áÆâ�ã]ä�å�æ�ç/èHåêéSëLì•í�î�å9ïzæLå9å�î�ðSë

ñ}ò�ð�óSòôä�å å

At the point where the project has been stopped so that the final report can be written
in time, the project stands at about 11,000 lines of assembler code, split between about
40 functions. Of the 18 sub-systems, all but the object control system have been
written.

Progress against the milestones as laid out in the project plan are a follows:

Analysis of problem·
A Yordon specification has been written for the system and some trial software
was also coded. This was done to assess the feasibility and to test methods for
handling the core Kernel functions. See appendix.

Design of the Kernel·
An SDS-3 formatted design has been created for the core kernel functions. See
appendix.

Design of the Loader·
The loader has been designed to implement the Kernel design. It will also
layout the basics memory structures that the Kernel needs. This has not been
formally documented as it relies heavily on the BIOS and other direct DOS
functions. Sketches and outline designs are in my log book.

Implementation of the Loader·
The Loader has been written (it is included on the SOURCE disk supplied) and
it is made up of several files. The three main ones being COBOS.ASM,
COBOSH.ASM, and CFINDDSK.ASM.

Implementation of the Installer·
The Installer has been written (it is included on the SOURCE disk supplied)
and it is made up of a single file. The file is INSTALL.ASM, a compiled
version is on the INSTALL disk.

Implementation of the Kernel·
This the current phase of the project and at the point of writing this report the
basic structural layers of the Kernel have been written. These are the
memory_allocation system, the interrupt control system, the task switcher, task
creation functions, the basic user interface and windows system. Also the basic
device driver code has been implemented, and the higher level MDSIO system
has been written but not fully tested. The only areas of the Kernel
implementation the have not been done is the Object Control System, and the
finishing touches on the graphics and system icons.

Progress had been slower than expected, some of the areas that were overlooked
during the design phase took a long time to sort out. But even with this, the project is
only at the most between 4 - 8 weeks behind the set schedule.

BEng/BSc Final Year Project Report õ�ö BEng (Hons) SWERTS 1996 / 97

áÆâ�ã]ä�å�æ�ç/èHåêéSëLì•í�î�å9ïzæLå9å�î�ðSë

ñ}ò�ð�óSòôéS÷¡÷¡îBëLó¯ézëLìøíùä�å�î�óSë¢ñÆòôðSú�ç�äz÷"å

The major problem in writing this system was the problem of writing PMODE code
using a MASM style assembler, without a PMODE debugger (See chapter 5 - p32).
But apart from this there were relatively few major problems, with the exception of the
following which placed the project behind schedule. These are discussed in the order
of the problems that caused the most delays.

Stack - MASM problems

This is really a collection of several problems one was a simple programming problem,
and others are inconsistencies in the way MASM deals with stack instructions, and
especially 32 bit stacks.

As a quick background, MASM sets itself up 16 bit segments, (as this is what DOS
uses), but this can be overridden in the source code to make them 32 bit. The
processor sets its mode from the type of segment that is in use (there is a bit associated
with each segment that defines the type of the segment). Now, to make things as little
bit more complicated, you can override the processor using some pseudo-instructions.

The first problem is a programming problem, and in the code the loader uses a 16 bit
stack (as it is a pure DOS function), but the COBOS system itself uses 32 bit stacks.
In the code it has not been defined specifically that the stacks should be 32 bit for the
COBOS system. This should not cause any problems once it was worked out that this
was the problem. This has been left in the code and not amended because the structure
of the calls would have to be changed to allow for the 32 bit pushes, and there was not
enough time for this. But this did cause a few re-writes as it could not be worked out
why some functions simply would not work.

All the rest of the problems where MASM inconsistencies, the first type was because
all the COBOS data areas are set up in the processor as 32 bits (including all stacks),
must stack instructions would push 32 bit sizes by default. But, and this is a very big
but, MASM would on some instructions override the stack instruction (using the
pseudo-instructions), and this would not always be done consistently. This meant that
the size of the push, and therefore where the data was in memory, could not always be
known.

Also the 80386+ processors have a set of addressing modes, some of which are fairly
complicated (and not very useful!). But MASM had very serious problems working
these out, and in the end none of the exotic memory address modes were used with
any stack push or pop as they could not be relied on to work as predicted.

The MASM errors took a lot of time to find and also caused the problem that every
time there was a failure in a subroutine, hours could be spent making sure all the stack
push's and pop's where correct when there was nothing wrong.

Windows map function

BEng/BSc Final Year Project Report õ

á

BEng (Hons) SWERTS 1996 / 97

áÆâ�ã]ä�å�æ�ç/èHåêéSëLì•í�î�å9ïzæLå9å�î�ðSë

With all systems that use windows or virtual screens, there is the problem updating
windows that underlie other windows. There are three ways of dealing with this. The
first and the most simple is the redraw all the windows overlapping the window that is
being redrawn. Another way of doing this is, if the window is not top, then don't
update it. Finally, and the most complicated, is to map the area that is overlapped, and
then only draw the area that has not been overlapped by the other windows.

Redrawing all the screens is very slow and as the screen functions can end up using
more machine time than actually processing the tasks. Redrawing the top window
only, defeats the real purpose for having multiple windows. The final method is the
best but it can be complicated to implement. The final method was the method of
choice.

This is a problem that is still outstanding because of the time it takes, and the method
that I choose was not the best, and it needs a complete rethink. This did get quite
involved, to see the problems it would be best to look in the project log book [anto 97
- entries starting 28/11/96]. But, in summary the method is too complicated and works
on an video line section, which has simply too many variables to be debugged properly
without a very good debugger. The method that should have been used is to create
simple pairs of co-ordinates which would bound the areas of the window that were not
to be displayed, this would cut down the complexity.

Mouse/Keyboard deadlock and the POSTBOX

This is an obvious error in hindsight. What the problem is that as all inputs to tasks are
handled by the handler sending a message to the task. But, for the functions that
actually need to do the message send they need to hold the in_use bit of TCB of the
task. This will lock up the system if the TCB is "inuse" by some other function, as
interrupt functions stop the timer from causing another interrupt. So what needed to
be done was to place a task that was in the standard task queue to do the messaging
for the interrupts, as this solve the deadlocking problem. This is what the POSTBOX
is for. (See chap 5 - p28).

Hotspot not being semaphored by the mouse system

This problem is very similar to the previous problem, except this happens when a
mouse button is pressed and the screen is being redrawn, as they both try to hold the
hot spot table. This one was got around by removing the "waits" from the mouse
system as it does not update the mouse table. What this really leads onto is that the
way some of the system tables are semaphored is not correct, and it needs to be re
thought, may be using update flags on the tables, or with "inuse" bits on the entries, or
making the tables holders for pointers to handles for the entries like the MDSIO
handle, described later.

Semaphore waits

In the initial thoughts for the COBOS project there was a semaphore sub-system
planned. But, as the analysis and designs were done there seemed less and less reason

BEng/BSc Final Year Project Report õzû BEng (Hons) SWERTS 1996 / 97

áÆâ�ã]ä�å�æ�ç/èHåêéSëLì•í�î�å9ïzæLå9å�î�ðSë

for having a full semaphore system. This was a mistake. At the moment all semaphore
waits are done by a simple loop:

loop: if the semaphore is free then exit loop
else swap the task out, and loop

There is one very simple problem with this, that if for some reason the semaphore has
been "got" by another function then that function fails. The semaphore will be
permanently set and will never be available to any other function. This means that the
system would need to be reset or some function that would free the semaphore would
need to be run. But, this is not a simple problem, because at the moment the
scheduling is done using a simple round robin scheme. This task would need to change
to check the semaphores making this task a lot more complicated, this is why it has not
been amended.

MDSIO handle

This is a problem that was being had with several of the system tables, i.e. that because
all the information on a system object was being held in its table, this would cause
bottlenecks, as to amend any object the application would need to hold the whole
table.

So the MDSIO handle is a solution to this problem, and could be applied to the hot
spot table, and could be used when creating the semaphore system which both
have/will have the same bottleneck problem. Simply, when the MDSIO object is
opened, the function creates a memory segment that holds all the data that needs to
change. So the only reason that an application would need to holds the MDSIO table
is when it is creating and deleting the object, and not every time the object is to be
used.

Also, the object itself could be also have a semaphore of its own, also solving some of
the problems mentioned in the "semaphore waits" section.

í�î�å ïSæLå åwî�ðzë

Most of the ideas used in this project are not new, and can be seen in bigger operating
systems. However, most are found in operating systems that are designed for much
larger systems. The basic ideas found in the designs (with the few amendments that are
mentioned above) will make this a very powerful operating system, in my opinion. As
can be seen in chapter 4, the ideas for this project are fairly powerful.

As a first step into working out how to use free-standing objects and speaking as a
student of engineering, the results of this project have been a great achievement in my
eyes.

BEng/BSc Final Year Project Report õ�ü BEng (Hons) SWERTS 1996 / 97

ýÿþ������ � þ����	��
�������

Independent distributed objects will be very useful for running large and complicated
applications over networks. Taking the image of nodes on the net. and cyberspace
with computers and data that are accessed by treating then like real objects in virtual
reality, then you can get the general idea of the direction of the COBOS project is
going in.

The project was an attempt to design and build the core of an operating system that
would be able to handle independent objects, and would be first layer of a system that
could run applications and systems that have been designed to be distributed. It was
also the first attempt by me to design and write a full operating system, with all the
complexity that this includes. As far as the project went I think this was a success.

As for the project itself, for the most part I am happy with progress made, with
exceptions of the areas mentioned in the last chapter. Some of these could have been
avoided by a little bit more attention to detail in the design phase, and the whole
project would have been completed quicker if another language had been chosen.
Assembler is the correct choice for the lower level code and system functions. But, for
the higher level functions, a 32 bit C should have been used.

I learnt from this project several things. The most important thing from an engineering
point of view, is to stop and take a look at the whole picture every now and then, as
getting caught in the small detail of the project can corrupt the view of the whole
project. For example with the semaphores. The semaphore system was in the original
ideas, but as each system started to fall into place separately it did not seem to be
needed. But, when the whole thing was looked at, it was needed. The next point
would be when designing a system do not ignore the obvious, and take some time to
make sure the obvious and simple things are simple, and that they are not really very
complex when looked at in detail. And finally, with project timings as you think they
should be, and add at least 50%, because with complex systems you cannot foresee all
problems, some you wont be able to see until the system is implemented.

Finally, even though the project has not turned out a fully as planned, I think that it
was a success and has been a good experience for me.

���

��������� � �����	����������

The first of three distinct areas of the COBOS project that are in need of further work,
is to finish the project itself and to tidy up some of the areas that there was not enough
time of me to finish. This includes writing the OCS, and to finish testing the MDSIO
sub-system. Creating a proper semaphore system and amending the code so that is will
use the semaphore functions. Also to amend some of the tables to try and avoid
bottleneck caused by having all the data for an object on the table.

The next area would be to add the areas of the COBOS idea that have been mentioned
in the technical background chapter of this report. That is including the writing of a
compiler for the COPLE language and building some objects and applications that a
distributed. It would also be a good idea to make COBOS a fully bootable operating
system as this would get rid of some the problems with incompatibility, and it will free
the bottom 1 meg.

The final area would be to investigate the areas that having a distributed operating and
distributed applications cause, and research how to be able to use and interrogate
objects without the need of an application to drive the query. How do you recover
from a distributed failure? How do you checkpoint and recover from a downed
system? How do you keep applications and objects the range over several machines
consistent? What about truly independent instances of objects, as the instances are
grouped together with the object and the code, make the instances free-standing with a
reference to the object. What about making instances, items in a set and having the set
have behaviours and attributes in common?

These a just a few of the areas that independent object programming leads to.

���

 "!$#&%('�)�* ,+.-�/�/102/�3

46587:9<;>=@?A7CBED(FHG2IJIKB�5L7CMONQPR7CMHDS=T;UNQVXWS;Y=OZ[FH7C7C\^]_=8WLD`587:G2B�GaML72ZTbRBdcO7CG2;fe2DS=X7CV8MXbRV

FH7C7C\TgChOij4k58bRIB�58G298DS7C;$M872DSG2bRPRIlD`587:IKB�587CM@NQPR7mD`58GjD(FHGaIM87CIKbRnoV87CMXWS=8;kDS587:prqtsJqvu

9<;Y=O?A7CBEDYeCGaVLMT5L=wFxbyDQML7�zObRG�DS7CMXWS;Y=OZxD`5L7{9<;Y=O?A7CBED<9QPRG2V$i

|~}f•Y€v•ƒ‚w„†…_€v• ‡tˆ

·
The projects milestones, and the distinct areas that the project
breaksdown to.

‰{ŠC„‹K€vŒ_‚•‰Ž•••‘… ‡t’

·
The planed projects schedule.

“^Œ_‚w”†•m•••m•–}>‚C— ‡‘‡

·
What actually happened with the project, including the areas of
the project that was not planned. Time details of the delays.

˜"™

š@›•œ<žYŸo ¢¡O£O¤tœ<¥§¦@¨O¨O©ª¨w«

¬v©ª¥R¡O2¤•Ÿ8¨o¡(

The project breaks down into 11 major milestones, and these are:

Analysis of the System·
Working out what was needed for the project and writing the intial specification
for the project.

Kernal Design·
Doing the detailed design of the system, including wriiting the SDS-3 Specification
for it. Working out what the structure of the code would be, and what language
was to be used.

Loader Design·
The design of the loader, and how the machine is to be switched into PMODE.

Implement the Loader·
Coding and testing of the code that will lauch the Kernal.

Implement the Kernel·
Coding of the Kernel, this includes the OCS, and the other sub-systems that make
up the main part of the project.

Writing the Interim Report·

Testing the Loader·
Making sure that the loader works to specification and to amend any problems that
arise in the testing.

Testing the Kernel·
Testing of the Kernel, this includes the OCS, and the other sub-systems that make
up the main part of the project.

Final Systems Test·
Running the whole system and the demonstration program, to make sure that it all
works togerther as one complete system.

Writting the Final Report·
Producing this report.

These milestones where found when the initial project analysis was done and they have
not been changed thoughout the project.

BEng/BSc Final Year Project Report ®<¯ BEng (Hons) SWERTS 1996 / 97

š@›•œ<žYŸo ¢¡O£O¤tœ<¥§¦@¨O¨O©ª¨w«

œ<žYŸo ¢¡O£(¤vœ<¥R¦8¨

Start Finish

De
sig

n

Do
cu

m
en

ta
tio

n

write
Intrim Report

Write
Final Report

Produce

Final Package

System
Analysis

D
es

ig
n

Lo
ad

er

Design
Kernel

Code
Loader Test

Loader Code
Kernel

Test
System

Fig 9.1 Simplified CPA for the COBOS project

The Project plan is based on the 29 weeks that where allotted to start in week 1, and
to end in week 30 of the final year.

The project plan is a little acedemic as this project is being written by one person, only
one task can be done at anyone time without casuing confusion. But, to make the task
of creating the system more managable it was split into tasks, and deadlines where set
for all these task. See 9.2 the Gantt Chart for the COBOS system.

The tasks for the system, with the estimated durations are listed below:

Task Duration
Analysis of system 1 week
Kernel Design 2 weeks
Loader Design 1 week
Implement Loader 2 weeks
Implement Kernel 14 weeks
Writing the interim report 2 weeks
Testing the Loader 3 days
Testing the Kernel 2 weeks
Final System Testing 2 weeks
Writing the User Guide 2 weeks
Writing the final report 2 Weeks

The Implement Kernel task of the project plan was split into sub-tasks, which are:

Task Duration
Memory System 3 days
Low level task system 3 days
Mouse Interrupt code 3 days
Keyboard Interrupt Code 1 Day
Task switcher Interrupt 1 Day
Descriptor Code 2 Days
Exception Handler 3 Days
Mouse Routines 3 Days
Window routines 1.5 weeks
Disk Driver and Block Device 1 Week
MDSIO functions 2 Weeks

BEng/BSc Final Year Project Report ®O° BEng (Hons) SWERTS 1996 / 97

š@›•œ<žYŸo ¢¡O£O¤tœ<¥§¦@¨O¨O©ª¨w«

Installer 1 Week
Applications Control 1 Week
Object Control System 2 Weeks
Testing Objects 2 Weeks
Graphics & Icons creation time available

All the above timings where guess-timates using the speed that I had written other
assembler programs before. Most of the above is based on the fact that after the design
phase the project consists of just coding and testing. There are no finiancial or
equipment availablity worked into the plan, as the equipment needed is always availble.
If there was any problems with the main equipment that was planned to be used then,
backup equipment was available in the university. No money was needed to be spent
becuase the software used for the project was owned by me. Also the university had
software that could be used in case of failure of the primary equipment.

±r£O¤f²o¦8¥ª¥¢©§¤Y³

The project did vary from the inital plan as described above. The above plan does not
really allow much room for problems that occoured during the creation of the project.
Also not all areas of the project have been finished. So the following is a list of the
actual progress against the plan.

Task Duration / Reason for Delay

Analysis 1 week - on time
Kernel Design 2 weeks - on time
Loader Design 20/10 - 23/10 - early finish
Implement Loader 23/10 - 30/10

Problem had to change from C to ASM, linking
problems with Borland and TASM/MASM code.

C_FIND_DISK 30/10 - 17/11
Function not in the design, needed to find the DOS file
so that linear block position could be found on the disk.

Implement Kernel 17/11 - 25/3
This task was not completed - more details to follow

Testing the Loader 30/10
Tesing the Kernel Kernel not complete
Final System Testing Kernel not complete
Writing the user guide This has been made an appendix of the final report
Writting the final report 25/3 - 21/4

The project report must have more information in it that
intially expected, so time extended.

For the sub-tasks that make up the implement kernel task, here is a breakdown of the
work schedules as happened:

Task Duration / reason

Memory system 17/11 - 24/11 - completed early

BEng/BSc Final Year Project Report ®O´ BEng (Hons) SWERTS 1996 / 97

š@›•œ<žYŸo ¢¡O£O¤tœ<¥§¦@¨O¨O©ª¨w«

Low level task systen 17/11 - 24/11 - completed early
Mouse Interrupt code 25/11 - 27/11 - completed early
Keyboard Interrupt code 27/11 - completed early
Task Switcher Interrupt 24/11 - completed early
Descriptor code 24/11 - completed early
Exception Handler 19/12 - 6/1

Late, problems with stack.
Mouse Routines 2/2 - 6/2 - small delay due to deadlocking
POSTBOX 6/2 - 7/2

Not in design, problems while testing tasks with
mouse points out a dealock caused by
send_message.

Windows routines 27/11 - 19/12
Stopped without completing, problems with
Windows mapping, most functions work, out of
time so stopped.

Disk Driver and Block Device 7/2 - 26/2
Had to redesign parts of the system, had idea.

MDSIO functions 26/2 - 25/3
Took more time than expected.

BEng/BSc Final Year Project Report ®O® BEng (Hons) SWERTS 1996 / 97

š@›•œ<žYŸo ¢¡O£O¤tœ<¥§¦@¨O¨O©ª¨w«

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

µUµ¶µ¶µ

A
n
a
lysys o

f syste
m

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

·¶·U·

D
esign K

ernal

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

¸U¸¶¸

D
esign Loader

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

¹U¹¶¹

Im
p
lim

e
n
t lo

a
d
e
r

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

ºUº¶º

Im
plim

ent K
ernal

M
em

ory S
ystem

Low
 level task system

M
ouse Interrupt C

ode
K

eyboard Interrupt C
ode

T
ask S

w
itch Interrupt C

ode
D

escritptor C
ode

E
xception H

andler
M

ouse R
outines

W
indow

 R
outines

D
isk D

river &
 B

lock D
evice

M
D

S
IO

 F
unctions

Installer
O

bject C
ontrol S

ystem
T

esting O
bjects

G
raphics and Icons

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

»¶»¶»

T
e
st L

o
a
d
e
r

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

¼U¼¶¼

T
e
st K

e
rn

a
l

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

½¶½U½

F
u
ll S

yste
m

 T
e
st

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

¾¶¾U¾

U
ser guide

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

¿¶¿U¿

F
in

a
l re

p
o
rt

3009
0212

2511
1811

1111
0411

2810
2110

1410
0710

0912
1002

0302
2701

2001
1301

0601
3012

2312
1612

1702
2104

1404
0704

3103
2403

1703
1003

0303
2402

11/12

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

À¶À¶À

In
te

rim
 R

e
p
o
rt

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

ÁUÁ¶ÁUÁ

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

Á¶Á¶ÁUÁ

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

ÁUÁ¶Á¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

Á¶ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

ÁUÁ¶Á

Revision Space

C
O

B
O

S
 P

roject P
lan

ÂÃ

ÄÆÅ ÇÈ

ÉÊË

Ì

ÌÍÎ

ÊÏ

ÌÐÑ

Ï

Ò

Ë

Ã

Ì

Ã

ÊÓ

Ô

Ï

Ñ

Õ Ö×

Ì

Ô

Ó

ÊË

BEng/BSc Final Year Project Report ®OØ BEng (Hons) SWERTS 1996 / 97

ÙxÚ2ÛÝÜaÚ�Þ�ß�à$á�â	ãåä

æ6çLèCéKèvêQëLë8ìOéríHèCîYèvïQéKèCðXñRòHóSç8è:ð8èCéKñRôwòXõ2ò8ðŽíöîYñyóªóSñRò8ôŽë8÷Ló`çLè{ø•ù†úJùmûvüQîYëOýyèCþEó•ÿ

"80386 Technical Reference"
E.Strauss, 1987, Brady, ISBN: 0-13-246893-X

"DOS Programmers Reference - 3rd Edition"
Dettman and Johnson, Que, ISBN: 0-88022-790-7

"Introduction to Algorithms"
Cormen, Leiserson, Rivet, McGraw-Hill, ISBN: 0-262-03141-8

"Microsoft 80386/80486 Programmers Guide"
R.P.Nelson, 1991, Microsoft Press, ISBN: 1-55615-343-0

"Microsoft PC/PS2 Video Systems"
R.Wilton, 1987, Microsoft Press, ISBN: 1-55615-103-9

"Programming the 80286,80386,80486, and Pentium-based Personal Computers"
B.B.Brey, 1996, Prentice Hall, ISBN: 0-02-314263-4

"Structured Computer Organisation - Third Edition"
Tanenbaum, Prentice Hall, ISBN: 0-13-852872-1

"The Indespensable PC Hardware Book"
H-P.Messmer, 1995, Addison-Wesley, ISBN: 0-021-87697-3

"The Theory and Practice of Compiler Writing"
J-P Trembley & P.G. Sorenson, 1985, McGraw-Hill, ISBN: 0-7167-8261-8

"Understanding CORBA - The Common Object Request Broker Architecture"
Otte, Patrick, Roy, 1996, Prentice Hall, ISBN: 0-13-459884-9

"Yordon Systems Method"
Yordon Inc., 1993, Prentice Hall, ISBN: 0-13-285818-5

���

�������
	��
������

�������������������! #"$�%"$��&'��"(��)+*,��-/.0)213����1'�5461$78������1'���9�:.;��<0.0�+=6"$ #>:�6?2&'��"�1'���%@BADCFE

)�G�H2����"$�I 5)�-/��1'����"�-��51' 5.0<0�,J

[anto 97] "Project log book"

This is the log book that was kept during the design and code of the COBOS project,
and it holds some design details for the loader and why certain choices was made. It
holds a chronological record of the projects development.

[corm 95] "Introduction to Algorithms"

The section pointed to by the text has a detailed description of how a queue structure
works. It also gives in detail how a queue would be implemented. Also this book gives
a good grounding into how most of the data structure types used in the project work.

[otte 90] "Understanding CORBA - The Common Object Request Broker
Architecture"

This book gives a good introduction the area of distributed objects, and in particular
the reasons for the way that COBRA has been designed. This book is written by some
who really likes COBRA and does not criticise the system at all.

[tane 90] "Structured Computer Organisation - Third Edition"

The section pointed to by the text shows how the ideas behind a stack frame are used
and why. This book also has a good section on the general area dealing with
concurrent systems and context switching.

K�L

MONQP�RSRUT
V�W

XZY\[']�^%_$^�`�a�_Z[�['^5b6[:c�a�de^gf\a+_(h+cjik`�]�_$l5c�^�cIl5_$^nmoY\d/l#_$p�^�h/m0Y q�r�sBt u5[']�^�c�^�[3^�_Zdec!l5_(^

^5bv`:w0l5m0Y�^�h2x�^�w0a6fUy

activate on need This is a task that when it is not being used is suspended, and
after it completes the task it has to do, it suspends itself.

bit fat In MS-DOS the File Allocation Table (FAT), is made up of
pointers to the next FAT entry in the file chain, and if the block
is free the space holds a zero entry. In a bit fat the FAT is made
up of single bits that are indexes of the sectors on the disk that
it represents. The bit fat does not point to the next sector in the
file, so the file system will need to hold that information. Bit fats
use less space than the MS-DOS type FAT, and can be
extended as the MS-DOS type fat has to have a size i.e. 16 or
12 bits, which then limits the number of sectors each fat can
reference. 12 bits is 4096 entries, and for 16 bits is 65536,
which then limits the size of the disk drive or partition.

call frames Is a way of creating space on the stack so that a function that is
called does not need to have dedicated memory assigned. With
concurrent systems, having dedicated memory with functions
that can be called by different applications at the same time
causes problems.

character maps Each character see on a screen is made up of a character map
the has the position of each pixel that needs to be displayed.
Note: this is with the exception of true type fonts that work
differently, but are not used in COBOS.

class A definition of a type of object, holds all the relevant
information that the objects need.

clusters As described in the bit fat above, MS-DOS has a limited number
of entries in its FAT. By using clusters, which is a number of
sectors, MS-DOS uses these the extend the size of the disks
that it can use.

constructor With an object, when it is created the data it holds must be set
to default values. The constructor is run by default when the
object is created.

BEng/BSc Final Year Project Report z|{~} BEng (Hons) SWERTS 1996 / 97

zF•o€�•#•5‚�ƒZ„S€†…ˆ‡:‰ŠƒŒ‹%•

context This is a machine state that an application that is running is in.
When switching between task, you change the context of the
processor.

descriptor This is a Intel structure the tells the processor where and of
what type is the memory segment that is to be used.

far call Far call is redirection in the program that also changes the
memory segment that the code is in. A call pushes the return
information onto the stack so the program can find where it was
called from.

garbage collection Memory that is allocated when a task needs it and released
when the task has finished with it. Leaves gaps in the memory
table that are to small to be used, and these are "garbage" which
needs to be collected with the other small parts of memory so
they can be used.

Global Descriptor This is an Intel table that holds the memory type descriptors,
Table that the processor uses. See Descriptor.

global realm This is a COBOS realm that is spread across more than one
computer system. A realm is like a directory in MS-DOS.

group This is a logical structure that allows object and applications in
one realm to reference objects in another realm. Realms are
ways of separating data and creating security for the data.

idle/halt loop When the processor runs out of valid tasks to run, it needs to
wait until a valid task is available. The idle wait, halts to
processor until an interrupt is caused. But, in case an interrupt
that returns back to the task happens, the next instruction after
the halt, jumps back to the halt instruction.

inheritance Objects are made up of data and behaviours. Inheritance is
where the behaviours and data types used in the object come
from an object that has been defined before hand and is used as
a base for a new object.

Instances Objects are definitions of the type of things that an item can do,
an instance is the item itself. So an object will have one of many
instances.

interrupt Is when the processor "interrupts" the current processing
stream. Normally from a signal from an external source.

interrupt descriptor An Intel table that holds the pointers to the interrupt code.
table

BEng/BSc Final Year Project Report z|{o• BEng (Hons) SWERTS 1996 / 97

zF•o€�•#•5‚�ƒZ„S€†…ˆ‡:‰ŠƒŒ‹%•

linear addressing The linear address is the number of the byte being addressed
from the start of memory.

load balance When running multiple systems, if one system is being used
more than the others then the task running on that system will
be running slower. So the "load" or the tasks being run on any
one system is spread across the rest, so that the systems have a
balanced load.

middleware This a system that sits between the application layer and the
operating system.

mutual exclusion When only one task at a time is allowed to access shared
memory or data at a time.

near jump Unlike the far call this does not change the memory segment
that the task is using.

persistence Data that is permanent until it is changed, is persistent. Most
files are persistent, but most objects are not as they are
structures that are created by the compiler and don't really exist.

pre-emptive When the context of a program is switched by the decision of
the operating system, rather than with non pre-emptive systems
that the task decides when to change the context.

protected mode This is the native mode of the 80x86 processors. It uses the full
range and power of the newer processors. It is the mode that
allows for descriptors and segments to be used.

round robin This is the simplest method for scheduling task in a multi-
tasking operating system. Basically it selects the next available
task.

segment This is a memory slice with a base linear address that points out
the start of the segment, and it also has a limit. The segment is
loaded into a segment register, and in addressed from zero
when is converted by the processor to a linear address.

selector The points to an entry in the GDT or IDT, so the descriptor can
be found, and there by the segment.

signal and wait These functions are used in mutual exclusion and hold and
release the semaphores.

von neumann Defined the basic structure of serial processors of the type that
the PC uses.

BEng/BSc Final Year Project Report z|{oŽ BEng (Hons) SWERTS 1996 / 97

•‘•�•�’
“�”–•,— •™˜›šœ’
•�ž�“Ÿ•5•� ¢¡‘£¤’�¥| –•†¡Q¦

§�¨+©0ªI©oªI«g¬'�®,¨�¯+©0®,«5°v«5±:±��¯�²+©;³\²�5¬'«#©0°o©0¯�´µ¨�¶6·¸¬3¨�%²�,¹�©0®D�ªI¶�¯2¬'¨�%º�»¼«#½$

±:½(¶+´6½$«,¾2¾e�²�¿5À~¬v·\©o°0°�¨��°0±/Á�¯+²��½$ªj¬3«5¯�²/¨�¶6·Â±:«5½B¬'ª!¶�Ã�¬'¨�%»ÅÄÇÆIÄ9È9±:½$¶�ÉÊ�®Ë¬v·\¶+½(Ì:Í�«5¯�²

·\¨†Î\ª�¶�¾/n²+�ª�©0´6¯/²��®,©oª�©0¶�¯�ª|·\�½$�¾e«5²��¿

Ï�ÐÒÑUÓnÔ�ÕˆÖ�×9ØÙÖ�×gÚ ÛÜÕÙÚÝ×

·
A brief description of the IDT, GDT and TSS that are the core of
the PMODE, and need to be understood to understand the way
that the COBOS system works.

ÏSÞ�ÑUÓnÔ�ÕÝßgÔ�àgáÂáÂàgâ�ã(× äjåÙÖ�×ÇÔ5æÒà�ãSç2èéá�×9Ô

·
ÏSê�ÑUÓnÔ�ÕÝßgÔ�àgáÂáÂàgâ�ã(× äjåÙÖ�×ÇÔ�Ô�ëgìÙÖÜíUÕÝåÙÖ6Ô�Õ�ãjã(×9Ô

·
Ïïî%ÑUÓnÔ�ÕÝßgÔ�àgáÂáðèñåÝßòÖ6óˆ× ô%×ÇÔ†èñà�ã¼ÛÜÕÝëgõö×

·

÷Iø6ù|ú�ûéüvýŒþvÿ�ýñþ����gü��vþ

For an in-depth look into protected mode and protected mode programming, it would
be best to read Microsoft's 80386/80486 Programming Guide. This will give an
overview of how PMODE works. This book is full of errors, but it basically gives an
insight to the area with out being overly technical. Then to actually do any protected
mode work, either the 80386 Technical Reference which is better at the low level
programming and describes what each instruction does in detail, or the programming
the 80286, 80386, 80486 and Pentium-based Personal Computers, which has more
details on programming the devices in PMODE. These will give a usable insight into
the PMODE. It must be warned that all these book contains errors, but errors that can
be got around.

What follows is just a description of the three main structures of the PMODE, the
TSS, the IDT and the GDT. It will also cover the entries on these tables and how to
get into PMODE.

ú������
	�����oýñÿ��

The switch into PMODE is very simple. There is a system register called the CR0, bit
0 of CR0 is the PM bit which tells the processor that it is in protected mode when set.
But, for the system to run in protected mode it needs to know where two system
tables are. First the IDT (Interrupt Descriptor Table) which tells the processor where
to find the interrupt code. The other is the GDT (Global Descriptor Table) which
holds the definitions of the memory segments. The following code does this:

xor eax, eax
mov ax, GDT
shl eax, 4
mov word ptr ds:[load _gdt], 0800h ; the limit of the gdt
mov dword ptr ds:2[load _gdt], eax ; the linear offset of the gdt

xor eax, eax
mov ax, IDT
shl eax, 4
mov word ptr ds:[load _idt], 0800h ; the limit of the gdt
mov dword ptr ds:2[load _idt], eax ; the linear offset of the gdt

lgdt fword ptr ds:[load _gdt] ;loads the gdt
lidt fword ptr ds:[load _idt] ; load the idt

mov eax, cr0
or eax, 01 ; set the PM bit
mov cr0, eax ; now in PMODE
jmp c_here ; clear the prefetcher

c_here:mov ax, offset g_DOS_tss ; the dummy tss for the task switch
ltr ax

fjmp16 g_cobos_tss,0000 ; jump to initial system TSS

There is a small near jump to "c_here", all this does is clear the processors prefetcher
which will be holding instructions that where loaded in real mode which may cause
problems when the processors state changes. The two tables must be valid or the
system will immediately "triple fault" which causes the machine to reset itself and
reload, when the "fjmp16" instruction is run. NOTE: the "fjmp16" is a macro the gets
around a MASM problem, it does not recognise the PMODE far jumps and calls.

BEng/BSc Final Year Project Report
÷��'ø

BEng (Hons) SWERTS 1996 / 97

÷Iø6ù|ú�ûéüvýŒþvÿ�ýñþ����gü��vþ

With all PMODE task switches, (this is what the fjmp16 will cause), the current
processor state is saved into a TSS. So the ltr instruction gives it a "dummy" TSS so it
can save the data in it.

��þ��5ÿ�û����†ýñü�û�����������þ��oþvÿ�ýñü�û��

rpli

TypeP dpl D Base 23..16
limit 19..16g db0 aBase 31..24

Base 15..0
Limit 15..0

selctor number

Global Descriptor
Table

Selector

Generic Descriptor
Format

 "!$#&%�')(*',+�-/.0-)13254�6878-:931:6�!*;�254�68<=4�6�>�?/2*9

The descriptor defines a memory segment, and where and of what size it is. The
descriptor shown is a "generic" type. The type field defines what the descriptor does,
and some of the fields for different types of descriptor vary. As far as segments go, the
two most important fields is the base and limit. The base holds the position of the
descriptor in the linear address space of the PC. With the limit telling the system how
big the segment is. Also executable code can only be found in a descriptor of the code
type.

Selectors are used to find the descriptors in the GDT, and are how the programmers
locate and reference memory segments. The selector has three bytes that are used by
the system to locate what table the selector in question is to use and what "privilege
level" that the segment is to be set at. The "i" bit in fig A1.1, selects either LDT or
GDT. (The LDT is the local descriptor table, and is not used, so is not explained here.)
The RPL bits are the requested privilege level of the segment. The request level cannot
exceed the level that is set by the DPL bits in the descriptor.

The IDT, also has descriptors on it, but cannot be referenced other than by causing an
interrupt.

@��A�CBD@A���/EF����oýñÿ��F�:þHG�I%þ��†ýKJ,������ý����/EF�L��0ýŒÿ����M��G

The TSS is a complicated structure, and it has space for the machine state and other
things. But, the only field in the TSS that is of interest is the back_link field, which is
the first word in the segment. What is in this word is selector that points back to the
task that called this tasks TSS. Why this is of importance is that if this back_link is
changed and a task return is done (an IRET instruction). Then the TSS pointed to by
the back_link field will be loaded. This how COBOS does its task switching.

Protected mode is far more complicated than this, but this at least explains how the
task switching is done and how memory is segmented.

BEng/BSc Final Year Project Report
÷��5N

BEng (Hons) SWERTS 1996 / 97

O�P�Q
R�S�T�U�SWV�XYXZV�[�\^]`_ba�c�]�Sed/V�\
fhg�XZ]�S

counter 2

counter 1

counter 0

CLK2

GATE2

CLK1

GATE1

CLK0

GATE0

Programmble
Interrupt

Controller

OUT0 to IR0

DMA chip
for DRAM refresh

OUT1 to chan0

Speaker
OUT2

8253/8254 PIT

i:j$k�l
m/n*oqp)r s�t=u�vwvyx)t3zMj$u�v|{

The PIT uses four ports for programming:

port 40h The data port for counter 0
port 41h The data port for counter 1
port 42h The data port for counter 2
port 43h The control port

The data port are used to read/load the number of clock ticks that the counter is to do
before the PIT actions its command. The decive is controlled via the control port and
the format of the control byte is:

00 = counter 0
01 = counter 1
10 = counter 2

00 = Counter latching
01 = Read/Load only LSB

10 = Read/Load only MSB
11 = Read/Load LSB/MSB

Mode
olny 000 - COBOS uses
and 010 - DOS uses
are of interest

0 - Normal Hex
1 - BCD

Port 43h PIT status byte

i:j$k&l�m/n0m�pwr s�}8u�v=zM~Du€•L•y‚wzƒx

The two modes of interst in the PIT are mode 000b that is used by COBOS, and when
the PIT gets a count, it counts down to zero, causes an interrupt, then does nothing
until the next count is sent. Mode 010b is the one that MS-DOS uses, and the PIT
counts down to zero, causes an interrupt, then starts counting down again using the
same count value. The PIT runs at 1193181 hz, so to get the interrupt to occur at
1/40th of a second, the count needs to be set at: 29829dec or 7485h. The follwing
code shows how the PIT is programmed in COBOS mode (000) for 1/40th of a
second.

mov al, 30h
out 43h, al ; mode 0 - LSB & MSB
mov al, 85h ; write the Low byte first
out 40h, al
mov al, 78h ; write high byte second
out 40h, al

BEng/BSc Final Year Project Report
O�„5…

BEng (Hons) SWERTS 1996 / 97

†�‡�ˆ
‰AŠW‹HŒ�Š�•�ŽYŽZ•�•�•5‘“’b”�•�‘�Š�Š�–�—�•�˜8‹�”�•KŠ�‹�•M•5‘�Š

SLAVE
8259A

PIC

MASTER
8259A

PIC

IRQ9
IRQ8

IRQ15
IRQ14
IRQ13
IRQ12
IRQ11
IRQ10

IRQ0

IRQ7
IRQ6
IRQ5
IRQ4
IRQ3

IRQ1

CAS0 CAS1 CAS2

CAS0 CAS1 CAS2

INT
INTA

INT
INTA

To the processor

From the processor

™›š•œ&ž�Ÿ¡ £¢�¤)¥0¦§¤|¦F¨8©3ª«œ�¬

The slave uses port A0h and
A1h for its commands

The Master uses port 20h
and 21h for its commands

MS-DOS sets up the two PICS so the master uses interrupts 08h - 0Fh, these
interrupts are needed by the processor in protected mode for the exceptions, this
includes the most important exception (int 0Dh) the general protection fault, which is
caused my most problems that a task will normally cause. So, the PIC needs to be
moved so that it uses interrupts that Intel have not reserved (int 21h onwards).

Due to a reason to do with the internals of the PIC, it can only have its first interrupt
number starting on an 8 boundary. In COBOS I set the PIC to start at int 20h, as this
is not used but is reserved. The method of programming the PIC is quite involved in
possible ways that it can be done, but here is how it is done in the COBOS system:

cli ; turn off the interrupts

set_PIC_mast:
mov al, 11h ; ICW1(cascade,ICW4,Edge triggered,interval of 8
out PIC_mast_a0, al ; send ICW1

mov al, 20h ; ICW2(start interrupt number - int 21h)
out PIC_mast_a1, al

mov al, 04h ; ICW3 (device IR2 is the slave)
out PIC_mast_a1, al

mov al, 01h ; ICW4 (8086/8088 mode-EOI=0,must acknowledge)
out PIC_mast_a1, al

set_PIC_slave:
mov al, 11h ; ICW1
out PIC_slave_a0, al

mov al, 28h ; ICW2 (next 8 interrupts)
out PIC_slave_a1, al

mov al, 02h ; ICW3 (slave on IR2 of the master)
out PIC_slave_a1, al

mov al, 01h ; ICW4
out PIC_slave_a1, al

See the indispensable PC Hardware Book for more details.

BEng/BSc Final Year Project Report
†�5®

BEng (Hons) SWERTS 1996 / 97

¯
°�±
²�³�´�µ�³�¶�·Y·Y¸�¹�µ§º¼»«½�¾A½�³�¸^¶�¿ÁÀ�´�Â�Ã�½

The only reason this data has been included in this report because it is so hard to come
by. The details of the first 3 mouse bytes were provided by M.Medvec. The fourth
byte that only occurs on a three button mouse was gained by simple trial and error and
was a pain to get.

The PS/2 mouse is a different kind of mouse, and all the hardware books have detailed
descriptions of this type of mouse works, even thought you will only find this type of
mouse on very old PS/2 (and compatible) machines. So only a description of how the
serial mouse works is given here. This expects the mouse to have been set up by the
mouse driver in MS-DOS, you need to program the serial port directly to do this, and
this is a pain so is not described here.

When the mouse is moved or the mouse button is pressed, it sends a set of mouse
bytes. Each of which are signalled by an interrupt on IRQ3 or IRQ4. These are read a
follows:

mov dx, 02f8h
in al, dx

The format for these bytes are as follows:

Byte 1 Byte 4Byte 3Byte 2
- 1 - 0 - 0 0 M

Bits 0 - 5 of the
x offset

Bits 0 - 5 of the
y offset

L - Left Mouse Button
R - Right Mouse Button
M - Middle Mouse Button

0 0 0 0 0 0L R x x x x x x x y y y y y y

Ä›Å•Æ�Ç:È8É«Ç*Ê,ËÍÌ�Î=Ï3ÐÒÑ|Ó)Ô5Ð:Ï

Bits 6 & 7 of the
y offset

Bits 6 & 7 of the
x offset

y

Byte 4 is only for 3 button mice, so but drivers that handle both need to look out for
this byte as it does cause problems. As you can see the mouse movement offset byte
has to be built from more than one byte, also this offset is 2's complement so once the
byte is built it can just be added to the mouse position.

BEng/BSc Final Year Project Report
¯�Õ5Ö

BEng (Hons) SWERTS 1996 / 97

×ÙØÚØ§Û“Ü§ÝßÞ)à áãâåäçæ�ÞLÜ§è éëêìáíêïî

ðòñôóFõKö�÷Áø«ùûú¼úKü�ö�ý ù�öÿþ ����ö�öÒü�ö�ý����“ð��	�

It is important that before running any of the COBOS programs, that SMARTDRV
and EMM386 are removed from AUTOEXEC.BAT and CONFIG.SYS, as these
functions interfere with the COBOS programs.

The COBOS system comes packaged on one disk with a file called install.bat. This
BAT file will handle the whole of the installation of the COBOS system. There must
be around 5 megabytes of hard disk space on the primary hard drive (the c: drive), so
that COBOS can create its DSK file.

To install COBOS, place OPERATING SYSTEM DISK, in the floppy disk drive:

The install bat file will create a directory called c:\cobos, and it will copy all the code
that COBOS needs into this directory.

To run COBOS,

type: c:\cobos\cobos

To exit COBOS, in this version, hit the <esc> key, which is a quick exit.

ð�
ûó�� öûüW÷ ø«ùûúKú¼ü�öqý���`ð����

To remove COBOS from your system there is a simple BAT file that is included with
the installed system that needs to be run. So, to uninstall the system type:

c:\cobos\remove.bat

This will clear all the code from the system, as well as removing the DSK file, and
returning this space back to the system.

ð��ûó�����ü ø�ü�ö�ý����ÿþ�� ���������“ð��	�

At the moment all code that is written for the COBOS system, must be complied into
the program, as the compiler and system manager has not been written. The code will
need to be in a 32 segment, and reference 32 data segments, so that the compiler uses
the correct overrides when it compiles the code.

See the file comctrl.asm on the source disk, as this is a self contained
task that runs in COBOS.

�����	� �	!#"%$ &(')�+*-,�.�/��10	23"%45� 67�1890�:;"<�923"%45�	8

=?>A@CB3D<EFEHGJIAKA@ML�NPOAIRQSD�@CITBUDWVX@CBYQZ@XIA[\OA]HD�VCV^QS>AG_D�EHEFVX@CN%DPQZ@COTI�EH`aOA[b`aDPc�c�@CIA[\@CIRQSGJ`a]SD�NPG

EH`dOTN%GJKReF`aGJBfQZ>ADPQhgi@CVCV^jFGkeFBlGJKijhmnQZ>AG_EH`dOT[b`aD%cic�GJ`oQZO�D<N%N%GJBlBfQZ>AG_BpmRBYQSG<c�]qeFIANrQS@COAIAB%s

add_hot_spot C-1
block_request C-2
close_MDSIO_object C-3
create_MDSIO_object C-4
create_realm C-5
delete_realm C-6
display_text C-7
extend_MDSIO_object C-8
open_MDSIO_object C-9
read_MDSIO_block C-10
read_message C-11
send_message C-12
write_MDSIO_block C-13

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

w;…†…ˆ‡h‰†Šf‹A‡JŒˆxTŠ;‹

Description

This function will add an hotspot to the hot spot table. If will look for a free space
then just add the entry. The status parameter sets up what type of hot spot is to be
created, and the format of the byte is as follows:

Hot Spot status byte

clear redraw expand move message user active screen

bit 0bit 7

 If the message bit is 0, then a mouse click in the window or icon will cause the
following packet to be sent. Else, the exact message a given will be sent.

Mouse Return Message Format

1

"02" "00"
Mouse
Buttons

x position y position filler

8642 10

The screen bit in the status byte tells the system if the hot spot is a icon or a virtual
window.

Parameters
size name usage

word owner of the screen The task that owns the screen
word screen top x the x position on the real screen of the hot spot
word screen top y the y position of the hot spot on the real screen
word screen bottom x the end x position of the hot spot
word screen bottom y the end y position
word max x pixels the maximum x size of the hot spot, this may be

bigger than the real screen.
word max y lines the maximum y size of the hot spot, this may be

bigger than the real screen
word relative start pixel the x offset in the hot spot, where the displaying

is to start
word relative start line the y offset in the hot spot, where the screen

display is to start
word target task the target of the screens messages
word message length if the task is to send a message, the
length
fword seg:offset - messagethe location of the message
fword seg:offset - graphic the location of the graphic or windows space
word status byte the details of the hot spot type

Returns
size usage

eax if the upper word is 0000 then ax = screen number
else eax holds the error code

BEng/BSc Final Year Project Report
t†•SŽ

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

•y•

Š;t;‘?‡b’”“R•|–;“RŒH‹

Description

This function will schedule a block request to the device that is specified. It will add
the request to the queue of the device. It does not return the result of the transfer but
the result of scheduling the request. The buffer is the source/target of the transfer, and
should not be amended to the device driver sends the message on the result of the
transfer. The format of the completion message is:

"03"
Device
Number

request
size

completed
size

Transfer Result

Block Device Return Message Format

1 3 5 7 11

Parameters
size name usage

word Destination device the device number for the transfer
word Command what the transfer is to be - blk_read or blk_write
dword Starting block the first block number to be transferred
word Transfer size the number of blocks to be transferred
dword Buffer offset the offset of the buffer within the buffer segment
word Buffer selector the buffer segment
word filler just so a 32bit register push can be used

Returns
size usage

EAX Result of the schedule.

BEng/BSc Final Year Project Report
t†•C—

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

t

•

Š;Œ†“^‡b˜W…?Œ™zšŠ”‡JŠ

•o›

“Rt†‹

Description

This function will close an MDSIO object that had been previously opened by a call to
open_MDSIO_object. The only parameter that is needed is the MDSIO_handle that is
returned from the open call. The only failure that can be caused by this function is
when a task that is not the owner tries to close an object. The only exception to this is
a task with the "system" bit set, which allows that task to override this check.

Parameter
size name usage

word MDSIO_handle the handle of the object to be closed.

Returns
register usage

eax result of the call - null or task not owner

BEng/BSc Final Year Project Report
t†•Cœ

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

t”’”“^wv‹™“b‡b˜W…oŒ†zqŠ”‡•Š

•?›

“ht™‹

Description

This function will create an MDSIO object. It takes the realm and name as parameters,
but it checks to see if the calling task has permissions, and that the object does not
already exist. This function does not leave the object that has just been created open.
So, if the object is to be used it will need to be opened, also this opens the file with no
blocks in it. So before any writes to the object are made, a call to
"extend_MDSIO_object" has to be done. The permission byte defines the how
applications can access the object just created.

Permissions byte format

unsed global group realm
00 - no access
01 - no write, read ok
10 - write, no read
11 - read and write

Parameter
size name usage

fword MDSIO name far pointer to a 32byte buffer that holds
the name of the MDSIO object to be
opened.

fword MDSIO realm name far pointer to a 32 byte buffer that holds
the name of the MDSIO object to be
opened.

word requested permissions the low byte is the permissions
byte
word requested type types 01 - flat data file,

02 - application object,
03 - "object" object

Returns
register usage

eax result of the call - null or task not owner

BEng/BSc Final Year Project Report
t†•Cž

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

t”’”“^wv‹™“b‡b’”“^w

•

˜

Description

This function will create a Realm. It will also create the onode for the realms own
table. The Realm table will be amended to add the realms record. If the realm table is
full then this function will extend the realm table. All extensions to the realm will be on
the same device that it has been created on. But, the objects can be set up on other
devices, the default in the same device as the realm. Note, the group name is logical
and can be anything.

Parameters
size name usage

fword Realm_name far pointer to a 32 byte buffer with the realms
name

fword Group_name far pointer to a 32 byte buffer with the group
name

word Device the target device for the realm
word Permissions the permissions byte, top byte is 0000

Returns
register usage

eax error-code

BEng/BSc Final Year Project Report
t†•CŸ

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

…y“

•

“R‹†“^‡b’”“^w

•

˜

Description

This function will delete a Realm. It will also delete the onode for the realms own
table. The Realm table will be amended to remove the realms record. It will only
remove the realm if the is empty.

Parameters:
size name usage

fword Realm_name 32 byte buffer with the name of the realm

Returns
register usage

eax error-code

BEng/BSc Final Year Project Report
t†•M

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

…yzšŒ?x

•

w™¡†‡J‹†“^¢v‹

Description

This function will display the character string on the screen at the text location that is
passed in to the function. It will check to see if the text runs off the end of the
window, and will end. If the screen does not exist it will ignore the call. The text is in
COBOS format, and the first byte of the message is the size of the text to be displayed.

Parameters
size name usage

word screen_number the number of the screen to be written to
word colour two bytes: foreground colour - background
colour
word x_position the start x position in characters
word y_position the start y position in character lines
pword text position far pointer to the buffer that holds the text.

Returns
register usage

<none>

BEng/BSc Final Year Project Report
t†•š£

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

“^¢v‹™“H¤v…H‡b˜W…?Œ™zšŠy‡•Š

•o›

“ht™‹

Description

The function will write the specified buffer to a new block added to the end of the file.
It will in necessarily extend the onode of the file if necessary.

Parameters:
size name usage

fword MDSIO output buffer
word MDSIO handle number

Returns:
register usage

eax the result of the call

BEng/BSc Final Year Project Report
t†•C¥

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

Š3x?“H¤?‡b˜W…?Œ™zšŠ”‡JŠ

•o›

“Rt†‹

Description

This function will open the requested MDSIO object and return the MDSIO handle for
the object. The permissions for the object will be tested. Also only the specified part of
the object can be opened by any one call. Multiple calls can be used to open different
parts of the same object. It may be noted that different parts of the same object my
have different permissions, so calls to different parts of the same object may have
different results. If an attempt to open a part of an MDSIO object that is of a type that
does not have the requested part the call will fail. Also if an attempt to open an object
of a type that should have a specific part by that part does not exist, then it cannot be
opened so it cab be extended.

Parameters:
size name usage

fword MDSIO name 32byte buffer
fword MDSIO realm name 32byte buffer
word requested access
word requested part

Returns:
register usage

eax the MDSIO entry number (ax only)
ebx the result of the call

BEng/BSc Final Year Project Report
t†•C¦

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

’y“bw;…H‡b˜W…?Œ™zšŠy‡

•y•

Šft;‘

Description

This function will read the block specified by the access mode. the three access modes
are "next", "prev" and "absolute". Next reads the next block sequentially in the object.
Prev reads the block that precedes the current block. Absolute block reads the block
number that is specified in the "absolute_block_number" parameter. It must be pointed
out that the block number is relative to the start of the object.

Parameters
size name usage

fword MDSIO output buffer the buffer to be read into
word MDSIO handle number the MDSIO handle
word MDSIO access mode three types: oa_next - forward mode

oa_prev - backward mode
oa_abso - absolute mode

dword Absolute block number the block number to be read, only used
when the access mode is "absolute".

Returns:
register usage

eax the result of the call

BEng/BSc Final Year Project Report
t™•SŽJ§

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

’y“bw;…H‡b˜_“RŒFŒTwy¨3“

Description

This procedure will read a message from the current tasks message queue. It will read
the top message and then remove it. If the queue is empty the function returns an error
code. This function does not check that top boundary of the buffer to see of there is
space.

Parameter
size name usage

dword destination offset the start byte of the buffer in the segment
word destination selector the segments selector
word filler 32 bit filler for the segment register push

Returns:
register usage

eax error code

BEng/BSc Final Year Project Report
t™•SŽRŽ

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

Œ™“H¤v…H‡b˜_“RŒFŒTwy¨3“

Description

This subroutine will send a message to the task that is pointed to by the task number
specified. If the destination message queue is full, it will return an error message. This
function does not check that top boundary of the buffer to see of there is space.

Parameter
size name usage

word destination task number the task to send the message to
word message size the size of the message to send
dword destination offset the start byte of the buffer in the segment
word destination selector the segments selector
word filler 32 bit filler for the segment register push

Returns:
register usage

eax error code

BEng/BSc Final Year Project Report
t™•SŽJ—

BEng (Hons) SWERTS 1996 / 97

tvuowyxoz|{b}R~b•R€‚•XƒA~^„

©

’yzš‹™“b‡b˜W…oŒ†zqŠ”‡

•y•

Š;t;‘

Description

The function will right the specified buffer to the block pointed to as the current block.
The buffer 512 byte long.

Parameters
size name usage

fword MDSIO output buffer the far location of the buffer to write
word MDSIO handle number the MDSIO handle of the MDSIO object

Returns
register usage

eax the result of the call

BEng/BSc Final Year Project Report
t™•SŽJœ

BEng (Hons) SWERTS 1996 / 97

ª(«1«	¬5	®#¯%° ±�²´³¶µ5·†®1µ5 ¸¹«	¬5º ¯r»v¯<º	¼�½3¯%µ5

Statement Of Purpose

System: Concurrent Object Based Operating System (COBOS)
Designer: P.Antoine

General Description:

The purpose of this system is to be a basis for the object1 based "hyper" language, COPLE.
The system will both hold and control the objects and the applications that are created by the
programming language. The system will also control the computer hardware, and manage
the data structures that will be held on disk, and the system will also handle the interactions
with the user.

Responsibilities:

1. Load/closing the applications.

2. Creation and Maintenance of the data file structures.

3. Interfacing with the computer hardware.

4. Controlling the user inputs.

5. Handling inter-process communications.

6. Controlling the data sharing (mutual exclusion)

Specific Exclusions:

1. Compiling the COPLE programs, and creating the objects code. These functions are
to be carried out by an application that will run under this operating system.

1 The definition of an object for this system is, a self contained data structure that holds both the data
and the code that other processes need to amend them. The data held within an object is not directly
available to external processes, but must be accesed thought a service (the objects code).

BEng/BSc Final Year Project Report ¾?¿SÀ BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

Ð�ÑÓÒbÑ ÔÓÕpÖØ× ÙÚÖÓÛ�Ü_Õ

COBOS

DEVICES
EXTERNAL

EXCEPTION

INTERRUPTS

Hardware interupts

Data

Control Signals

exceptions

Software
Generated
Interrupts

Context Diagram

APPLICATION

object calls

system calls

Task Data

Object Data

Terminator Definitions

Name: External Devices
Meaning: This terminator is the hardware interrupt system of the computer, which is

triggered by the devices when they want to talk to the software.
Instances: 1

Name: Exception
Meaning: These are the software exceptions that are caused by bad code.
Instances: 17
Identifier: Ex.number - as defined by INTEL

Name: Interrupts
Meaning: Software generated interrupts, caused by the instruction INT n.
Instances: 238
Identifier: INT17 - INT255

Name: Application
meaning: Application that is being controlled by the system.
Instances: variable
identifier: App-number

BEng/BSc Final Year Project Report ¾?¿CÝ BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

1

System
Manager

Object
Control System

2

Hardware Interrupts

Device
Interupts

Device
Data

Control
Signals

Exceptions Software Interupt

Object
Requests

System Calls

Level 0 - Diagram

Task Data

Object Data

ÀbÞ™ÅAßJà�ÌáÇÏâ_àäã�ËAÎbËRåRÇAæ

The systems manager process, controls the way the system interfaces with the hardware. This
includes fault and device handling. Loading and closing of the applications will be controlled
by this processes. This part of the system is very machine specific.

ÝAÞ™ÃUçéèšÇRÈhÌ�Â™ÍÏÎ^Ì‚æêÍÏëyÅAßJà�ÌáÇÏâ

This process will control the way applications access the objects, it will also create the
instance space2 that the objects services will use when accessing an instance of the object.
This system uses the system manager for data requests, so is less machine specific.

2 "instance space", is created when an application needs to access an object, and is a kind of buffer.

BEng/BSc Final Year Project Report ¾?¿Cì BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

Hardware Interupts

Level 1 - System Manager

Control
System

1.1

Control Signals

Task List

Allocate
Memory

1.6

MDSIO Request

Close Request

Load Request

Memory Request

System Data

Hot Spot Table

1.3

Amend
Hot Spots

Hot Spot Request

Exception

Software Interupts

Task Data *

Task Data *

Device Data

Device Queue

MDSIO

1.2

Action

Requests

Load
Application

1.5

Malloc Table

MDSIO RequestClose
Application

1.4

Memory Request

Object Table

Load
Object

2.2

Load
Request

open object

MDSIO Requests

Memory Request

Instance

Find
Object

2.1

Close
Object

2.3

Memory Request

new
MDSIO Request

Instance
delete

MDSIO Request

Instance
Find

2.4 2.5

2.6

MDSIO Request

Find Request

Add Instance
remove Instance

Object Data*

Object Data*

Level 2 - Object Control System

MDSIO Request

Add Object
Buffer

Remove
Object
Buffer

2.7 2.8

Memory Request

add buffer Rqst
remove buffer rqst

Close Object

BEng/BSc Final Year Project Report ¾?¿Cí BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

Switch
Task

1.1.1

Task List

Task Data

System Data*

Hardware Interupt*

Timer Int

Handle
Exceptions

Exceptions
Software Interupt

Control
Software
Interupts

Close Request

Error
Report Hardware Interupt*

Control
Hardware
Interupts

Hot Spot Table
System Data*

Check
Keyboard

Level 1.1 - Control System

1.1.2

1.1.3

1.1.4

1.1.6

1.1.7

Device Queue

Control Signals

Start
Signal

Check
Mouse

1.1.5

Control
Block
Device

1.1.8

Device Data

Realm Table

Realm Directory

Open MDSIO Table

Device Queue

Device Table

Check

Permission

Action
Block

Request

1.2.3

1.2.11

Start Signal

MDSIO MDSIO
Object

ContractRead

Block

1.2.81.2.9

Level 1.2 - Action MDSIO Requests
** READ / CONTRACT have external MDSIO requests **

MDSIO extend request

MDSIO
Object

Extend

1.2.7

MDSIO close request

MDSIO open request

MDSIO Delete request

MDSIO
Object

Delete

1.2.4

MDSIO
Object

Close

1.2.6

MDSIO delete realm Delete
Realm

1.2.1

MDSIO create realm Create
Realm

1.2.2

MDSIO
Write

Block

1.2.10

MDSIO write request

MDSIO
Object

Open

1.2.5

BEng/BSc Final Year Project Report ¾?¿Cî BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

ïWðÓÒRñdÒJò�óiÜôÕpÑÓÒRñêÖ�ð�õ3öWñp÷ ÙøÖÓÛ�ÜôÕ

Object_Buffer

Realm_name Connections Group

Realm_Table

Realm

Realm_Directory

MDSIO_Size MDSIO_Permissions

MDSIO_Name

MDSIO_Type

Data

Application

App_code App_Source

Object_Source

Object_Data

Service

Service_code

Service_definition

Access_Record

Access_Lock Owner

Current_Block

Parameter*

open_MDSIO_table

Object

Device_number *

MDSIO_Date

Object_Owner

Size

Instance_Space Attribute

Instance_Number

Default_value

Object_Data

Object_Table Object_Table_Entry

Device_number *

Type Parameter* Object_Name

Loaded_Object Loaded_Service Service_Code

Application_Number*

Task_Data
Owner

System

Malloc_EntryMalloc_Table

Allocation_Size Allocation_Base

Task_List

Task_State

Task_Data_Space

Task_Code

Message* Message_data

Message_sizeDevice_RequestDevice_Queue

Request_Type

Start_Block Device_Number

Request_SizeRequest_State

Request_Buffer

Device Device_Table

Device_HandlerDevice_Parameters

Hot_Spot

Bottom_Right

Position

Top_Left

Hot_Spot_Table

System_Call

Hot_Spot_Type

Message_send

Realm_Permissions

Message*Application number*

Current_TaskSystem_Data

Application_Number*User_Task

Device_Buffer

** Items marked with an ' * ' appear more than once on the diagram **

Message_Queue

Realm_Owner Realm *

App_Data

MDSIO_Object

BEng/BSc Final Year Project Report ¾?¿Mù BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

úôûJÖ�üÓÜýõ3õÿþ\÷ÓÜWüWñ��Jñpü�ÑØÒRñpÖ�ð

1.1.1 Switch Task

if SYSTEM_DATA.current_task = null or is the only task
then

exit
else

for x = all tasks in TASK_LIST
if TASK_LIST.task_state <> suspended
then

SYSTEM_DATA.current_task = TASK_LIST[x].application_number
Do hardware switch
exit

fi
fi

1.1.2 Handle Exceptions

On event EXCEPTION.number
if EXCEPTION.error_code = true
then

display error_code
fi

if EXCEPTION <> "stack error"
then

display failing stack top
display system state

else
display system state

fi

if EXECPTION.type = FATAL
then

call close_task[SYSTEM_DATA.current_task]
call switch_task

fi

1.1.3 Report Error

Display error code
Display error type

if caused by task
then

pass error_code to TASK_DATA[SYSTEM_DATA.current_task]
fi

1.1.4 Control Software Interrupts

On SOFTWARE_INTERRUPT event
if SOFTWARE_INTERRUPT is not valid
then

Call report_error
else

if SOFTWARE_INTERRUPT = SWAP_TASK
then

Call SWITCH_TASK
else

BEng/BSc Final Year Project Report ¾?¿�� BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

Call <interrupt handler>
fi

fi

1.1.5 Check Mouse

calculate new mouse position
display mouse on screen

if mouse button has been pressed
then

for all HOT_SPOTS in HOT_SPOT_LIST
if (new_mouse_position >= HOT_SPOT.top_left) and
 (new_mouse_position <= HOT_SPOT.bottom_right)
then

if HOT_SPOT.hot_spot_type = system_call
then

action system_call
else

pass message to message_send.application_number
fi

fi
fi

1.1.6 Check Keyboard

if SYSTEM_DATA.user_task = null
then

exit
else

pass keypress to SYSTEM_DATA.user_task
fi

1.1.7 Control Hardware Interrupts

On HARDWARE_INTERRUPT event

if event not generated by Hardware
then

Call report_error
else

CASE(HARDWARE_INTERRUPT)

mouse: Call check_mouse
keyboard: Call check_keyboard
block_device: Generate block_device event
vaild_hardware:Call <device_handler>
default: Call report_error

fi

BEng/BSc Final Year Project Report ¾?¿�� BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

1.1.8 Control Block Device

Device_queue_emptyDevice_event

Produce Error

Transfer_complete?

Start_Signal

Generate Control Signals

Device_event

Action transfer

no

Yes

Remove transfer from Queue

no

Generate Control Signals

Queue Empty?

Yes

Device_active Start_signal

** "Action_transfer" means depending on the MDISO request copy buffer to device or from device **

1.2.1 Delete Realm

if Realm.Realm_name = exists
then

add REALM to open_MDSIO_TABLE with update lock
wait(REALM_TABLE)

if REALM_DIRECTORY for realm not empty
then

produce error
else

remove from REALM_TABLE
fi

signal (REALM_TABLE)
remove REALM from MDSIO_TABLE

fi

1.2.2 Create Realm

if REALM.realm_name does not exist in REALM_TABLE
then

add REALM to open_MDSIO_TABLE with update lock
wait(REALM_TABLE)
add realm_name to table
signal (REALM_TABLE)
remove REALM from MDSIO_TABLE

fi

BEng/BSc Final Year Project Report ¾?¿�� BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

1.2.3 Check Permissions

if REALM in MDSIO_Table wait until free

if permission of request < permission of REALM_TABLE
then

produce error
else

search REALM_DIRECTORY for request
if found and permission of request >= permission of item
then

search OPEN_MDSIO_TABLE
if open and access lock = OK
then

return MDSIO_Object
else

produce error
else

produce error
fi

fi

1.2.4 Delete MDSIO Object

add REALM to MDSIO_Table with update lock

if Call Check_perrmission ok
then

delete MDSIO_Object
fi

remove REALM from MDSIO_Table

1.2.5 Open MDSIO Object

if Call Check_permisssion is ok
then

add Access_Record to OPEN_MDSIO_TABLE

if MDSIO_Object is new
then

add REALM to MDSIO_Table with update lock
add MDSIO_Object to Directory
remove REALM from MDSIO_Table

fi
fi

1.2.6 Close MDSIO Object

search OPEN_MDSIO_TABLE for requested item
if found
then

remove Access_Record from OPEN_MDSIO_TABLE
fi

BEng/BSc Final Year Project Report ¾o¿SÀ�� BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

1.2.7 Extend MDSIO Object

check OPEN_MDSIO_TABLE
if found and Access_record.access_lock allows update
then

wait (FAT_SEM) * will need the devices free space table *

call action_block_request(read MDSIO_Object index)

x = current_block.next_block
current_block.next_block = new_block

if x <> last_block marker
then

next_block.prev_block = new_block
fi

new_block. next_block = x
new_block.prev_block = current_block

current_block = new_block

call Action_Block_Request(write write MDSIO_Object index)

Signal (FAT_SEM) * release the free space table *
fi

1.2.8 Contract MDSIO Object

check OPEN_MDSIO_TABLE
if found and Access_record.access_lock allows update
then

call action_block_request(read MDSIO_Object index)

x = current_block.next_block
y = current_block.prev_block

if x <> last_block marker
then

x.prev_block = y
fi

if y <> first_block marker
then

y.prev_block = x
fi

call Action_Block_Request(write write MDSIO_Object index)

wait(FAT_SEM)* will need the free space table *
update the free space table
Signal(FAT_SEM) * realase the free space table *

fi

1.2.9 Read MDSIO Block

check OPEN_MDSIO_TABLE
if found and access_record allows read
then

BEng/BSc Final Year Project Report ¾o¿SÀRÀ BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

call action_block_request(current block to MDSIO_Request.buffer)
fi

1.2.10 Write MDSIO Block
check OPEN_MDSIO_TABLE
if found and access_record allows update
then

call action_block_request(write MDSIO_Request.buffer to current block)
fi

1.2.11 Access Block Request

add request to DEVICE_QUEUE

send start_signal to DEVICE_TABLE.<handler>

1.3 Amend Hot Spots

If Hot_Spot_request.type = remove
then

if Hot_Spot_Request.number in Hot_Spot_Table and
 caller = owner or system
then

remove Hot_Spot
fi

else
add Hot_Spot_Request to Hot_Spot_Table
return Hot_spot entry number

fi

1.4 Close Application

set TASK_DATA.task_state = suspended

for all Object_Buffers owned by application
Call Remove_Object_Buffer

for all hot_spots owned by application
Call amend_hot_spot (remove)

for all MDSIO_objects owned by application
Call Close_MDSIO_Object

for all Memory allocations owned by application
Call allocate_memory (remove)

delete task entry from task list

delete Task_Data

if task is user_task
then

user_task = null

if task is current task
then

if any other tasks exist
then

current_task is next task
else

close system

BEng/BSc Final Year Project Report ¾o¿SÀJÝ BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

fi

signal switch_task
fi

1.5 Load Application

open MDSIO_Object that hold the application

add task_data entry

task_data.task_data_space = call allocate_memory(add, size app_data size)
call read_MDSIO_object (app_data to memory allocation)

task_data.task_code = call allocate_memory(add, size app_code size)
call read_MDSIO_object (app_code to memory allocation)

add task_list entry

if current_task = null
then

current_task = new task
fi

1.6 Allocate Memory

if malloc_request = remove
then

remove entry
if entry is consecutive to any other entries
then

join entries
fi

else
if there is free memory
then

allocate space
fi

fi

2.1 Find Object

Search Object table
if found
then

if permissions of caller >= object
then

increment connections for object entry
return object entry

else
return error

fi
else

call load_object
fi

BEng/BSc Final Year Project Report ¾o¿SÀJì BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

2.2 Load Object

call open_MDSIO_object
if opened ok
then

create Object_table_entry
create Object_Data_entry
call memory_allocation to create allocations for service definition list,

 service code, data buffers.
read MDSIO_Object code to code allocations, service definitions to

allocation.
read first block in object block buffer

fi

2.3 Close Object

if object in object table
then

decrement connections
if connections = 0
then

free memory allocations
call close_MDSIO_object

fi
fi

2.4 New Instance

read_MDSIO_Object (object index to object buffer)
if there is an existing block where the new instance fits
then

read_MDSIO_Object (block_number to object buffer)
amend object_buffer from instance_space for new entry
write_MDSIO_OBJECT(from object buffer to block_number)

else
amend object_buffer from instance_space for new object
extend_MDSIO_Object(at object end)
write_MDSIO_Object (from object buffer to new block)

fi

2.5 Delete Instance

read_MDSIO_object (object index to object buffer)
amend index
write_MDSIO_object(index_block)

if instance last instance in block
then

contract_MDSIO_object(block_number)
else

read_MDSIO_object(block_number)
amend object_buffer
write_MDSIO_object(block_number)

fi

BEng/BSc Final Year Project Report ¾o¿SÀJí BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

2.6 Find Instance

read_MDSIO_object(object_index to object buffer)
search index for item
if found
then

read_MDSIO_object(block_number)
copy instance to instance_space
set instance number

fi

2.7 Add Object Buffer

if object loaded and caller owns instance space
then

add instance space to object data
fi

2.8 Remove Object Buffer
if object loaded and caller owns instance space
then

remove instance space from object data
fi

BEng/BSc Final Year Project Report ¾o¿SÀJî BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

ïWðÓÒRñdÒJò þ\÷ÓÜWükñ	�éñêü�ÑÓÒRñêÖ�ð�õ

Data Structure: Device_Table
Definition: This structure holds the details of the block devices that the system knows

about. The <device_parameters> is a sub-structure that will hold the device
specific details and as each device will have different parameters, it cannot
be specified here. The <device_handler> is also device specific.

Entries: one per device
Key: <device_number>
Structure: Device := <device_number> <Device_handler> <device_parameters>

 <device_buffer>

Data Structure: Device_Queue
Definition: This structure holds the request to the block devices that has been sent by

the MDSIO processes. This structure is a list of requests in the order that
they have added to the queue. These request also hold the state of the
request, i.e. waiting, started, or finished.

Entries: one per request
Key: by device by entry order
Structure: Device_Request := <device_number> <request_state> <request_type>

 <request_size> <start_block> <request_size>
 <request_buffer>

Data Structure: Malloc_Table
Definition: This structure holds the allocations of the systems memory, and what tasks

have requested what allocations. The <owner> field can be either an
application or the system itself. The base is where the allocation starts in the
system.

Key: by owner by entry order
Structure: Malloc_Entry := <owner> <allocation_base> <allocation_size>

Owner := ['system' | <application_number>]

Data Structure: Task_List
Definition: This structure hold the tasks that have been loaded into the system, and in

which order the tasks are to be run in.
Key: by entry order
Structure: Task_list := { <task_data> }

Data Structure: Task_Data
Definition: This structure holds the information that the system needs for each task.
Key: by application_number
Structure: Task_Data := <application_number> <task_state> <task_code>

<task_data_space> <message_queue>
message_queue := { <messege> }
message := <message_size> <message_data>

Data Structure: Hot Spot Table
Definition: This structure holds the screen address of any screen "furniture" that is used

on it. This could include icons, windows, system buttons, etc.. It hold the
"hot" area of the screen that the piece of screen furniture is active. The
<owner> is defined above.

Key: by entry order
Structure: Hot_Spot := <action> <owner> <position>

Action := [<message_send> | <system_call>]
Position := <top_left> <bottom_right>
top_left := <x_cordinate> <y_cordinate>
bottom_right := same as top_left

BEng/BSc Final Year Project Report ¾o¿SÀ<ù BEng (Hons) SWERTS 1996 / 97

¾†Á™Â™ÃUÄ?Ã;Å5ÅˆÆ^ÇRÈAÉMÊpÉCÈRËRÌ‚ÉXÍÏÎ

Data Structure: Object_Data
Definition: This structure holds the access information that applications need to access

the services and instances of the objects that have been opened. This also
holds the parameter definitions for the services that have been loaded.

Key: by entry order
Structure: Loaded_Object :=object_table_entry> {<instance_space>}

{<Loaded_service>}
instance_space := <object_owner> <instance_number> <attrebute>
object_owner := <application_number>
loaded_service := <service_code> <parameter>
parameter := <default_value> <size> <type>

Data Structure: Object_Table
Definition: The structure will hold the information on the objects that have been opened

and loaded to the system, and will keep track of the number of applications
that have connected to each object.

Key: by entry order by object name
Structure: Object_Table_entry:=<object_name> <connections> <object_buffer>

<realm_name> <loaded_object>

Data Structure: Realm_Table
Definition: The structure is the "root" structure for the data stored on disk, its not

modelled as part of the MDSIO system, as logically its not, but in the real
system it will be. It holds the permissions and the group that the realm
belongs to.

Key: by Realm_name
Structure: Realm := <realm_name> <realm_directory> <device_number>

 <permissions> <group>
Permissions := ** standard unix a-like permissions **

Data Structure: Realm_Directory
Definition: This structure is similar to a directory, except it is flat, and there are not

realms within realms. this again in logically not part of the disk system, by in
reality it is. This structure holds the data structures that are part of the
MDSIO. <parameter> is as defined earlier.

Key: by MDSIO_Name
Structure: MDSIO_Object := <MDSIO_Name> <MDSIO_permissions> <MDSIO_type>

 <MDSIO_Size> <MDSIO_date> <Device_number>
 [<object> | <data> | <application>]

Object := <object_source> <object_data> {<service>}
Service := { <service_code> <service_definition> }
Service_defintion := {parameter}
Application := <app_code> <app_data> <app_source>

Data Structure: Open_MDSIO_Table
Definition: This table holds the access records for the MDSIO objects that have been

opened.
Key: by entry
Structure: Access_Record := <owner> <access_lock> <current_block>

BEng/BSc Final Year Project Report ¾o¿SÀ
� BEng (Hons) SWERTS 1996 / 97

�������������� ���������! �" �#�%$&��'��

(*)�+�)-,�.0/213)-,543,6/2798;:3)�.<,�=>4@?2A3+B/213)DCFEHG0EJIK.ML;.N/2)PORQPS2/UTV.<)�.W7HOXA3:3,5?2,�)�:@I9Y*IPZ	[

OX)P/213A3:\Q�]B13)D:3)�.<,�=>4XAU438^L_TV.<)�.`/�abAX.<1U)�)P/c.ed�)�,6/213)�+WfhgjiKA3+kflgj[J79.k:3)�?2,�43)�:@,�4b/213)

.<m�13A3A385.W:3)�.<,5=
4bOX)P/213A3:@137P:3A;T3/MQn]o1U)-.<13)�)P/2.paq13)�+�)DrVAU.<.<,6sV8�)D79+�)DrV8579m�)�:@A34b/213)

.<7�O@)-rt7P=
)J/cA@.<7eu;)-.<rt79mn)3Q�]B13,�.k:3)�.<,�=>4@:3A3)�.pu;79+2Lb?2+	AvO�/c13)Drt+	Avwx)�me/V7P.paq+�,6/y/c)�4\Q

z|{*}•~h€;•M‚*} •ƒ}h„*…*†

·

delete realm E-8
create realm E-9
open mdsio object E-10
delete mdsio object E-11
close mdsio object E-12
extend mdsio object E-13
contract mdsio object E-14
read mdsio block E-15
write mdsio block E-16
load application E-17
close application E-18
amend hot spot E-19
check permissions E-20
switch task E-21
handle exceptions E-22
check mouse E-23
check keyboard E-24
block_request E-25
allocate memory E-26
send message E-27
read message E-28
open object E-29
close object E-33
find instance E-34
new instance E-35
delete instance E-36
draw_mouse E-37
clear_mouse E-38
display E-39

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

•l–B—p—\˜š™œ›•™`ž ŸW¡pž ¢F£ •h¤W—p¥`¦6§P¦�¥`¢\˜¨¦�Ÿk©

ª¬«®�¯‘«±°‘²h³ ´¶µ@·PµD¸ ¹¶°>º�»�³ ¼¨½�¾N¿9Àe¾<À�Á

¹¶»�Â<ÃÄ¯‘Åe»P«�³ ÆeÇ ÈWÉ ÊÌËvÍ6É¬Î

ª¬«®�¯‘«±°‘²ÐÏ9»�Ñ;Ò�Ã6«2»9²k»PÅeº�Â ³

This program is an operating system that will control a PC. The program will have several entry
points, some that are called by "applications" (which are programs loaded by the system). It will also
control the data file system, and handle all the system interfaces and hardware.

The entry points for the system are as follows:

Delete_Realm Create_Realm Open_MDSIO_Object
Close_MDSIO_Object Extend_MDSIO_Object Contract_MDSIO_Object
Read_MDSIO_Block Write_MDSIO_Block Seek_MDSIO_Block
Close_Application Load_Application Amend_Hot_Spot
Add_Object_Buffer Remove_Object_Buffer Open_Object
Close_Object Find_Instance New_instance
Delete_Instance Switch_Task * Check_Keyboard *
Check_Mouse * Hardware_Interrupt * Software_Interrupt *
Exceptions *

Note: entry points marked '*' can not be directly called, but are called by the hardware.

The system will have three types of data structures, the data file, a standard flat file, the application, a
file with two strands, the source code and the object code, which are accessed thought the same name.
The third type is the object, this has three strands, the source file, the service code, and finally the
instances of the object.

In the design the functions wait and signal are used, these are not real functions but are the following
assembler code:

Wait: bts system_semaphore, #sem_number
jnc wait

and signal:
signal btr system_semaphore, #sem_number

As allocate_memory returns a selector:table_entry_number pair, all system references should hold
both this pair so that the talbe_entry_number can be used to free the entry, and the selector for access
to the memory space.

Ó;Ô�Õ‘Ö±×MØ\Ô3ÙÛÚtÔ>ÜWÝtÞVÚ3ß�Ö5àMÖ�ß�átÜMÖyØ\ÔVâ

ãä°‘å æ�Ã6Åe»�³ ç
·�è#´\Ë;é|ê�ë�ÊyÍ6ì‘íîÎKÆ¨´\ï

Æ<¸�¾N½-·
ç

µD¸lð êñÎ�òóÍ ô®Í^ò¨ëõÊ�Í^ËvÉöË;÷BønÍúùvø¬ÎP÷

û

¿�ü

û

ÁlËv÷Bø�Í^ù;ø¬ÎP÷Bê>÷ýË
ò¨Îóðþð<Ë;÷

ç6ÿ����
Íîð��

�
÷�Í �óÎlëõðkê
÷�Í6éWë;÷��

�
÷�Í ��Î

È%éWË
	¨ð<Î

��
È��9Í

�
Î�Ë-ò ë;÷

�

ÈWì�Ë���Î*¼léWÎnù
ë;ì���Ê�ÎlËõôtéWÎPéWË;÷��

����»P«2°
º2Ã6Åe¯����eÂþºy»9²h³ ÈWÉ�����ÎP÷2ð¨Í^Ë;É|Ë�ô
ÿ

µD¸

�þ°;Åe¯‘Òó°
¯
»õ³

û

¿�ü

û

ÁKÆ<èqµ
ÿ��

ë�ðNð<ÎPé|ì‘íîÎP÷��ÄèDÈF¸�è ôcËv÷	éWëõÊ��

BEng/BSc Final Year Project Report
‡;Œ��

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

•l–B—p—\˜! ›#"%$B©\¥p˜¨¦�Ÿk©¶¢�&('D—\§9¦5©¶¦6˜¨¦�Ÿk©

ª¬«®�¯‘«±°‘²h³ ´¶µ@·PµD¸ ¹¶°>º�»�³ ¼¨½�¾N¿9Àe¾<À�Á

¹¶»�Â<ÃÄ¯‘Åe»P«�³ ÆeÇ ÈWÉ ÊÌËvÍ6É¬Î

)¬Ò�Ånå<º2Ãx>Åe°+*v¹¶»9å
²��
õÂþº2Ã6
ÅP³

Interrupts System tasks

PMODE switch DOS return

Mouse

Keyboard

Command
+

Control

Video
Task

Device
Driver

Device
Handler

COBOS

Kernel

Task
Switcher

,ñ.-K¹¶»0/2Ã6ÅeºcÃ6>ÅeÂ

1`°‘²k» ¹¶»�Â<å¨«®Ã���º2Ãx>Å

PMODE_switch This changes the mode of the processor, and sets up the structures that are
needed.

Kernel The core of the operating system
DOS Return This returns the PC to real mode, as MS-DOS likes it.
Interrupts The Interrupt handling system, including the exceptions
Keyboard Handles the keypress on the keyboard
Mouse Handles the mouse moves, and button presses
Device Handler Handles the IDE drive interrupts
Task Switcher This handles switching and selectiing the next task
Video Task Controls the redrawing of the virtual screens
Post Box handles messages from the interrupts to the applications
Device Driver Controls the block device transfers
Command + Control The user interface task controller

BEng/BSc Final Year Project Report
‡;Œ�2

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

¹¶°>º�°���º2«ýÒnå<º2Ò�«2»�³

3B
ÅóÂþºy°‘Åeº54vÃ76>»9Åeº2Ã8/y»9« �9Ã79¨» ¹¶»�Â<å¨«®Ã���º2Ãx>Å

Tick_count Word Holds the number of times the timer interrupt has been
called.

System_semaphores Word semaphores for the system tables
Task_List Word Holds the selector to the data segement that holds the

task list.
Malloc_List Word Holds the selector for the Memory allocation table.
Device_Table Word Holds the selector for the device table.
IDT_Table Word Holds the selector to a data segment that points to the

interrupt descriptor table.
GDT_Table Word As for the IDT_Table but points to the Global Discriptor

Table.
Soft_Int_Table Word A selector that holds the software interrupt handlers.
Hard_Int_Table Word A selector that holds the hardware interrupt handlers.
Object_Table Word A selector that holds the objects that have been opened.
MDSIO_Table Word A selector that holds the MDSIO objects that have been

opened.
Hot_Spot_Table Word A selector that holds the Hot Spot list.
Current_Task Word This is the task number of the task that is current being

executed.
User_Task Word This task is where all the keyboard inputs will be

directed.
Mouse_X Word holds the current x position of the mouse pointer
Mouse_Y Word holds the current y position of the mouse pointer.
Screen_X Word the size of the screen (x)
Screen_Y Word the size of the screen (y)
Mouse_Sprite 160 Bytes Graphic of the mouse pointer.
Screen_Under 160 Bytes Holds the screen data of the area that was under the

mouse.

Structure Names Structure Description
size name description

Task_Entry word back_link The task that is higher in the list
word forward_link The next task in the list
word TCB_segment selector of the Task Control Block
word TSS_segment selector of the Task State Segment

Malloc_Entry dword size The size of the allocation
word owner The application that owns entry
word selector The data selector of the allocation
dword address Linear start address

Device_Table 16 bytes device_name the name of the block device
word queue_seg the selector of the DPB
fword handler the sel:offset of the device handler
1 byte status holds the REALM and FAT bits

GDT and IDT entries 8 bytes ** see Intel 386 technical documentation **

Object_table_entry word MDSIO_num the number of the MDSIO object entry
word connections the number of connections to the object
dword block_num the number of the block in buffer
dword buffer the data area for the object buff

BEng/BSc Final Year Project Report
‡;Œ�•

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

dword service_code selector of the service code area
dword service_desc selector of the services parameter table
word instance_size the size of the data area that the

instance needs.
dword first_instance the first instance of the object
dword last_instamce the last instance of the object
byte permissions the objects permissions byte, bit 7 is

used as a semaphore.

Loaded_Object word object_number entry njumber of the object table
word app_number the application_number of the task that

owns the instance
word instance_num the key into the object
dword instance_spacethe data area that hold the instance data

service_desc byte size the number of services
word param[size] the index to the start of the parameter

description.

parameter_desc byte size the number of parameters
word type[size] byte:byte the defintion of the parameter
word p_size[size] the parameter data size.

MDSIO_access_rec word owner 0000h system -else app that opened it
32 bytes name object name
32 bytes realm the owning realm
32 bytes group the group the owns the object
3 words MDSIO_pos device(byte):start_block(dword)
dword current_block last block that was accessed
byte access_lock how the object was opened
byte type the object type(Object, application,

data, realm)

DeviceParameterBlock byte status the status byte of the device
byte queue_head the head entry into the device queue
byte queue_tail the queue tail
byte queue_size the number of enties allowed in queue
7 words queue[size] the queue entry
? unknown ? the device specific parameters, the

device driver will know what the
positions are.

Device_queue_entry byte command what the request is
byte size number of blocks to be transfered
word app_number the application number
dword start_block the start block of transfer
fword buffer the data transfer buffer

TaskControlBlock word task_number
word TSS_sel the TSS selector for the task
dword error_code the error code of the task error
word TCB_alloc the TCB malloc table entry
word Code_alloc the code allocation
word Data_alloc the data allocation
word TSS_alloc Task_State_segment
word Stack_alloc Current stack

BEng/BSc Final Year Project Report
‡;Œ�:

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

size name description
word LT_Stack_alloc stack needed when calling system

functions at different CPL's
word status the status word
word mess_head where the first message starts
word mess_tail where the last message ends
word mess_start start of messahe space
word mess_end end of message space
byte index_head head of the index entry queue
byte index_tail tail of the index queue
byte index_size the size of the index
byte filler ** keep things on a word boundary **
dword index_entry size(word):start point(word)
? bytes message spacespace for the messages

Hot_spot word owner 0000h system - application number
word top_x screen x of the top left
word top_y screen y of the top left
word bottom_x screen x of the bottom right
word bottom_y screen y of the bottom right
word task task number for the message
word message_len the length of the message
byte message[length]the message
? bytes graphic data for the screen graphic for the icon,

(top_x - bottom_x)/8*2 bytes

error_code ** 32bits in total**
3 bits system_part 000 - no error, 001 - not-used,

010 - application cpl 3,
011 - application cpl 2,
100 - application cpl 1,
101 - device error, 110 - task level
error, 111 - system error

3 bits serverity 111 -catastrophic failure (no recovery),
110 - failure, 101 - warnimg,
100 -comment, 000 - ok no error

26 bits specific_error this depends on the system part

** specific error for a system error **
2 bits filler 00
3 bits failing_part 000 - no error, 001 - task_list,

002 - malloc list , 011 -
3 bits error_type 000 - none, 001 - full, 010 - currupt,

011 - not available, 100 - does not
exist, 101 - privaledge violation

2 bits item_type 01 - task number, 10 - selector,
11 - system function

word failing_item the locator of item that caused the error

** specific error for a task error **
2 bits filler 00
4 bits failing_part 0001 - TCB variable, 0010 - TCB

mesage index, 0011 - TCB message
space, 0100 - Task status

BEng/BSc Final Year Project Report
‡;Œ�;

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

4 bits error 0001 - in use, 0010 - full, 0100 -
currupt, 0101 - not available, 0110 -
empty, 0111 - not allowed.

size name description
word error_data data to help resolve the error

** specific error for a device error **
2 bits filler 00
byte device_number the device that failed
word error_data data to help resolve the error

realm 32 bytes name the name of the realm
3 words dir_position device(byte):start_position(dword)
32 bytes group the group name that the realm belongs

to.
byte permissions unix a-like permissions

realm_directory 3 words next_block device(byte):block(dword)
** repeated one for each entry **
32 bytes name MDSIO object name
dword date day(word) : year(word) (julien date)
word type_size bits 15&16 type - 01 data, 01

application 11 - object : bits 1-14
instance size

3 words start_block permissions(byte) : device(byte) :
block(dword) - data

3 words start_block permissions(byte) : device(byte) :
block(dword) - code

3 words start_block permissions(byte) : device(byte) :
block(dword) - instance data

permissions 2 bits realm-w-r write access read access
2 bits group-w-r as above
2 bits world-w-r as above

File Formats:
name size name description

Application_header 12bytes first record of the application code file
word data_size size of the app's perminate data space
word code_size size if the app's code
word stack_size size of the app's stack
word queue_size size of the app's message queue
word message_spacesize of the space for the apps messages
word initial_size size of the data stored in the file

Object_service_header 7bytes First record in the service file
word code_start offset within the file where the code is
word code_size the size of the code area
byte services the number of services in this object

Object_service_record variable on the number of paramsone record for each service
byte size the number of parameters
word type the parameter definition type(byte:byte)
byte size the size of the parameter

BEng/BSc Final Year Project Report
‡;Œ�<

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

Object_data_header word instance_size the size of the data area needed
dword first_instance the first instance of the object
dword last_instance the last instance of the object

System semaphore numbers:

task_list 0
malloc_list 1
device_table 2
IDT 3
GDT 4
software_interrupt_table 5
hardware_interrupt_table 6
object_table 7
MDSIO_table 8
Hot_spot_table 9

BEng/BSc Final Year Project Report
‡;Œ>=

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 16/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Delete_Realm

Description:

Delete_Realm, is the function tho remove the named realm from the systems realm table. This
function will also return the blocks taken up by the realm directory to the free space area (the DOS
FAT). The function will error if either the realm does not exist, or the realm has any objects in it.
This function is callable by any system part, or by any application.

Formal Parameters:

realm_name fword pointer the name of the ream to be deleted
file_buffer fword pointer the data buffer of for the disk accesses

Returns:

error_code

Functional Decompsition:

Delete Realm

wait(Realm_Table)
check_permissions

(Realm_name,null,0)

item =
If Item = null

error =

Realm_not_exist

Yes

Remove Realm

signal(Realm_table)

No

Check if Next_block

Is Emply

Check if Realm

Is Emply

until all searched or found

error =

Realm_not_empty

if entry <> empty

error =

Realm_not_empty

Yes no

add update Record

to MDSIO_table

Remove update Record

From MDSIO_table

wait(Device.FAT)

Remove Realm

record from Table
Free Disk allocation

Signal(Device.FAT)

Clear FAT Entry*

wait(MDSIO_Table) Signal(MDSIO_Table)

add record to

MDSIO_Table

wait(MDSIO_Table) Signal(MDSIO_Table)

remove record from

MDSIO_Table

Data Structures:

item file-pointer will hold the device:block of the realm_directory

BEng/BSc Final Year Project Report
‡;Œ�X

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 16/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Create_Realm

Description:

Create_Realm, is the function that will add the named realm to the systems realm table. This function
will also allocate the blocks taken up by the realm directory from the free space area (the DOS FAT).
The function will error if the realm exists. This function is callable by any system part, or by any
application.

Formal Parameters:

realm_name fword pointer the name of the ream to be created
file_buffer fword_pointer the buffer to be used for the disk accesses

Returns:

error_code

Functional Decompsition:

Create Realm

wait(Realm_Table)
check_permissions

(Realm_name,null,0)

item =
If Item = null

error =

Realm_exists
Add Realm

signal(Realm_table)

Yes

add update Record

to MDSIO_table

Remove update Record

From MDSIO_table

wait(Device.FAT) Signal(Device.FAT)

Set FAT Entry

wait(MDSIO_Table) Signal(MDSIO_Table)

add record to

MDSIO_Table

wait(MDSIO_Table) Signal(MDSIO_Table)

remove record from

MDSIO_Table

No

Add Realm

record to Table
Make Disk allocation

Set Realm Record

to point to

Disk allocation

Data Structures:

item file-pointer will hold the device:block of the realm_directory

BEng/BSc Final Year Project Report
‡;Œ�Y

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 16/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Open_MDSIO_Object

Description:

This function will find and open the requested MDSIO object. If the object does not exist and the
access rights that are requested by the caller are for create, then this function will create the requested
MDSIO object.

Parameters:
MDSIO_name fword pointer to MDSIO object name
MDSIO_realm fword pointer to the realm name that the object is in
buffer fword pointer to the file buffer
access-rights byte the access that is request to the object
type byte for multi-part objects, what part is being opened

Returns:
MDSIO_number returns the MDSIO_Table entry number
error_code

Functional Decomposition:

open_MDSIO_object

create
write
updateRead

create MDSIO object

wait(MDSIO_Table)
check_permissions

(realm,name,
access_type)

if found

Yes No

error =

file_allready_exists
create object

Allocate Disk Space Add MDSIO Record

No

error =

file_does_not_exists

Yes

wait(device.FAT) set FAT record signal(device.FAT)

if found

if chk_perm.access

= read or none

No

error =

file_open_clash

Yes

if found

No Yes

error =

file_does_not_exists

if chk_perm.access

= none

Add MDSIO Record

No

error =

file_open_clash

acess_type = ?

Yes

error =

permissions_error

if Permissions

= Ok

No

signal(MDSIO_Table)

Data Structures:
chk_perm.access is returned from check_permissions, with a variable that shows if the
MDSIO_object exists or not.

BEng/BSc Final Year Project Report
‡‘ŒZ�.[

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 16/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Delete_MDSIO_Object

Description:

This function will find and delete the requested MDSIO object.

Parameters:
MDSIO_name fword pointer to MDSIO object name
MDSIO_realm fword pointer to the realm name that the object is in
buffer fword pointer to the file buffer
access-rights byte the access that is request to the object
type byte for multi-part objects, what part is being opened

Returns:
error_code

Functional Decomposition:

delete_MDSIO_object

wait(MDSIO_Table)
check_permissions

(realm,name,
access_type)

if found

YesNo

error =

file_does_not_exist

Free Disk Space

wait(device.FAT) set FAT record signal(device.FAT)

if chk_perm.access

= none

Yes

if Permissions

= Ok

No

signal(MDSIO_Table)

NoYes

Remove Entry From

Realm directory

delete object
error =

permissions_fault

error =

permissions_fault

Data Structures:
chk_perm.access is returned from check_permissions, with a variable that shows if the
MDSIO_object exists or not.

BEng/BSc Final Year Project Report
‡‘ŒZ�+�

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 16/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Close_MDSIO_Object

Description:

The function will close a MDSIO object that has been opened by the calling task. The function will
check the current_task indecator against the owner field in the MDSIO table record, to see of the
object can be closed.

Parameters:

MDSIO_numberword the entry number into the MDSIO object table.

Returns:

error_code

Functional Decomposition:

Close_MDSIO_Object

wait(MDSIO_Table)
MDSIO[entry_number].owner

if current_task =

Remove entry

from table

error =

permissions_failure

signal(MDSIO_Table)

BEng/BSc Final Year Project Report
‡‘ŒZ�.2

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 17/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Extend_MDSIO_Object

Description:

This function will extend an open MDSIO Object by the requested number of blocks. This function
will also allocate the requested disk space from the devices FAT. The file will be extended by
increments of the devices allocation units. The number of blocks allocated will be the number of disk
allocation units that is needed to fit the number of blocks that was requested. Also the file will be
extented after the file allocation unit, that hold the current block.

Parameters:
MDSIO_numberword the entry number into the MDSIO object table.
size word the number of blocks that are to be added to the file.

Returns:
error_code

Functional Decomposition:

Extend_MDSIO_Object

wait(MDSIO_Table)
MDSIO[entry_number].owner

if current_task =

error =

permissions_failure

signal(MDSIO_Table)

NoYes

if acess_lock =

read

error =

permissions_failure

Yes No

Extend_file

Wait(Device.FAT)

old = current_pointer current_pointer = new new = old

Signal(Device.FAT)

get new allocation

If device full then

error = device_full

Data Strucures:
variable name Description

old A temporary variable to hold the current_blocks next block pointer
current_pointer The currents block pointer to the next FAT entry.
new The FAT entry of the new block allocated.

BEng/BSc Final Year Project Report
‡‘ŒZ�ñ•

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 17/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Contract_MDSIO_Object

Description:

This function will contract an open MDSIO Object by a single device allocation unit. This function
will also return the allocated disk space to the devices FAT. It will remove the FAT allocation, which
holds the current_block.
Parameters:

MDSIO_numberword the entry number into the MDSIO object table.

Returns:

error_code

Functional Decomposition:

Contract_MDSIO_Object

wait(MDSIO_Table)
MDSIO[entry_number].owner

if current_task =

error =

permissions_failure

signal(MDSIO_Table)

NoYes

if acess_lock =

read

error =

permissions_failure

Yes No

Extend_file

Wait(Device.FAT)

current_pointer
clear current_pointer

Signal(Device.FAT)

Find previous block
Previous_pointer =

BEng/BSc Final Year Project Report
‡‘ŒZ�.:

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 17/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Read_MDSIO_Object

Description:

This function will read the block that is pointed to by the current block of the MDSIO_Object record.
The block will be read into the calling task buffer. This function checks the MDSIO record to make
sure that the calling task is the owner, then calls block_request to read the block.

Parameters:

MDSIO_numberword the entry number into the MDSIO object table.
buffer fword task buffer for the read.

Returns:

error_code

BEng/BSc Final Year Project Report
‡‘ŒZ�.;

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 17/09/96
Designer: P.Antoine x-ref: MDSIO system
Function name: Write_MDSIO_Object

Description:

This function will write to the block that is pointed to by the current block of the MDSIO_Object
record. The block will be written from the calling task buffer. This function checks the MDSIO record
to make sure that the calling task is the owner, then calls block_request to write the block.

Parameters:

MDSIO_numberword the entry number into the MDSIO object table.
Buffer fword pointer to the buffer that is to be read.

Returns:

error_code

BEng/BSc Final Year Project Report
‡‘ŒZ�\<

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 17/09/96
Designer: P.Antoine x-ref: Task_Control

Function name: Load_Application
Description:

This function will create the memory allocations that the requested task will need. Then read in the
information from the MDSIO_Object application into the memory allocations. It will also add the
new task control block the the task list, as an active task.

Parameters:

MDSIO_name fword pointer to MDSIO object name of the application
MDSIO_realm fword pointer to the realm name that the application is in

Returns:

error_code

Functional Decomposition:

Load Application

If open ok Call open_MDSIO_Object

Read Header

Create TCB
wait(Task_List)

add to task_list

call Allocate_memory

for TCB memory

call allocate_memory

for Data memory

call allocate_memory

for Code memory

call allocate_memory

for local stack

call allocate_memory

for transfer stack

signal(Task_List)

add to task_list

Read Data &

Code into task
Call close_MDSIO_Object

call

read_MDSIO_block

move read block

to memory allocation

Box description:

Call open_MDSIO_object will only open the data side of the MDSIO object
Read_Data & Code into task will read both the data and code into the memory allocations
Call read_MDSIO_block will need to call seek_MDSIO_block so that the file is positioned

after each block read.

BEng/BSc Final Year Project Report
‡‘ŒZ�]=

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 17/09/96
Designer: P.Antoine x-ref: Task_Control

Function name: Close_Application
Description:

This function will remove the application from the task list,the TCB is also deleted plus the
allocations that it used. This function will also search the system tables and will call the close/remove
function for any object that is owned by the application that is being closed. Also if the task being
close is the current task and there are no other tasks then this function will call Close_System.

Parameters:

Application_number word the application to be closed.

Returns:

error_code

BEng/BSc Final Year Project Report
‡‘ŒZ�.X

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 18/09/96
Designer: P.Antoine x-ref: User_Input
Function name: Amend_Hot_Spot

Description:

This function will add/remove a hot spot from the jot spot list. This function will wait(Hot_Spot),
then add to the table the new entry, then signal(hot_spot), to release the table.

Parameters:

command byte 01 - add, 02 - remove
owner word application number or 0000 for system
top_x word top left hand x co-ord
top_y word top left hand y co-ord
bottom_x word bottom right x co-ord
bottom_y word bottom right y co-ord
mess_task word the task that the object is to sognal when activated
message fword pointer to a structure word:[bytes], where the word is the number

of bytes in the the message.
graphic fword pointer to a data space of 160bytes that hold the graphic of the
icon if this is Null then there is no graphic.

Returns:

error_code

BEng/BSc Final Year Project Report
‡‘ŒZ�.Y

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 18/09/96
Designer: P.Antoine x-refs: delete_realm, create_realm, delete_MDSIO_object

open_MDSIO_object

Function name: Check_Permissions
Description:

This function will check the MDSIO object permissions and will return the location of the object, and
if the object had been previously opened will return the highest open access of the object. The access
types that are allowed are: read, write, create, update. A file can be opened by many applications to be
read, but by only one application that will write to it. If the permissions that are requested is invalid
then this function will return an error code. Also this function does not obey the semaphore on the
MDSIO table, and should only be called by a function that has previously waited for the semaphore.

Parameters:

MDSIO_name fword pointer to MDSIO object name of the application
MDSIO_realm fword pointer to the realm name that the application is in
access_type byte the access that is required for the MDSIO object

Returns:

Result byte 01 - failed, 00 - permissions Ok
State byte 00 - does not exist, 01 - exists but not open, 02 - opened read,

03 - opened for write/update/create

Functional Decomposition:

Check_Permissions

for each entry

if realm.name = realm

name = object_name
and

if access = "read"

state = open_update state = open_read

Search

MDSIO_Table
wait(Realm_Table)

search realm table

signal(Realm_Table)

for all blocks

on realm table

*

Block_Request

(Realm_Table)
if Realm = realm

if task.realm =

realm

Permissions = OK

Location = Realm

if (task.group =

realm.group) and

(access.group =

access.request)

Permissions = OK

Location = Realm

if access.world =

access.request

Permissions = OK

Location = Realm

Permissions = Fail

Location = Null

Yes

If permissions = OK

and name <> Null

search realm

if object.name =

Request.name

if task.realm =

realm

Permissions = OK

Location = object

if (task.group =

object.group) and

(access.group =

access.request)

Permissions = OK

Location = object

if access.world =

access.request

Permissions = OK

Location = object

Permissions = Fail

Location = Null

Yes No

Yes No

Yes
No

YesNo

YesNo

YesNo

Yes

YesYes

Yes

No

BEng/BSc Final Year Project Report
‡‘Œ52+[

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: Task Control

Function name: Switch_Task
Description:

This function will update the timer count and then switch the current task that is running for the next
task in the task list, if there is not a next task in the task list then this function does nothing.

Parameters:

<none>

Returns:

<none>

Program Fragment:

timer_loop:
update internal timer count

i21_task_swtc:
if current task is zero jump exit
if next task = current task jump exit

get next task
if next task is suspended jump i_21_task_Switch
move task-pointer to task-switch-tss.back-link
exit

BEng/BSc Final Year Project Report
‡‘Œ52^�

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: Exception Handler

Function name: Handle_Exceptions
Description:

This function will handle the exceptions that are caused by the applications and system code that are
running on the system. Each exception entry will point to a piece of code that will set the exception
number and any error code into a system area, then call the exception handler, which will then deal
with the exception. As a special case, the #FFFFFFFFh and #FFFFFFFEh error codes for a 0Dh
(GPF), then these represent invaild software or hardware interrupts.

The code for each exception will look like:

push ax
mov ax, sys_segment
mov ds, ax
pop ax
pop ds:[error_code]
mov ds:[exception_number], #exception_number
call error_handler
iretd

Note: that not all exceptions have error codes so that the pop error_code may not happen.

Parameters:

<none>

Returns:

<none>

Functional Decomposition:

Handle_Exceptions

display(CS:EIP)

for crashed app

display(SS:ESP)

for crashed app
display(Exception)

display(current_task)

draw_boxset exception bit

Wait for keypress

clear_box clear exception bit

until except_key = set

set interrupt bit wait for keypress

if exception = 0Dh

and special error

display "invaild

interrupt" message

YesNo

if FATAL then

close_app(current)
display Infomation

BEng/BSc Final Year Project Report
‡‘Œ52+2

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: User Input System

Function name: Check_Mouse
Description:

This procedure will update the location of the mouse and do any redraws on the screen that is nessary.
If the mouse mouse button has been pressed, this function will check to see if the position of the
mouse click is in a hot spot, if it is it will then send the message that is in the hot spot.

Parameter:

<none>

Returns:

<none>

Functional Decomposition:

Check_Mouse

If mouse moved

system.mouse_x

+= x_offset

system.mouse_y

+= y_offset
Clear_Mouse Draw_Mouse

If mouse clicked

check Hot Spots

if mouse_position

inside hotspot

send_message(

task,message)

for all HOT_SPOT table

*

Note: If mouse_position inside hot spot, is :

if (system.mouse_x >= hot-spot.top_x and system.mouse_x <= hot_spot.bot_x) and
 (system.mouse_y >= hot_spot.top_y and system.mouse_y <= hot_spot.bot_y)

BEng/BSc Final Year Project Report
‡‘Œ52‘•

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: User Input System

Function name: Check_Keyboard
Description:

This procedure will read from the keyboard the charater that has just been typed, and if the exception
bit is set it will set the exception key bit. If the exception bit is not set it will then send the key that it
has just read to the user_task. This function uses send_message send the keystroke to the user task.
this function sends the raw keystroke to the task and not the ascii value.

Parameter:

<none>

Returns:

<none>

BEng/BSc Final Year Project Report
‡‘Œ52+:

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: MDSIO system, Control Hardware interrupts

Function name: Block_Request
Description:

This function will add the request for a block transfer to the specific devices queue, then call the
queue handler for the specific device. As each queue handler is device specific it cant be modled here.

Parameter:

<none>

Returns:

<none>

BEng/BSc Final Year Project Report
‡‘Œ52+;

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: Main system

Function name: Allocate_memory
Description:

This procedure will allocate memory, as required by the system. If either the allocation able is full or
if the memeory is full then it will return an error code to the calling procedure.

Parameter:

owner who is requesting the allocation
size the size of the allocation

Returns:

malloc_number the memory table allocation number
selector the GDT selector for the data segment

Functional Decomposition:

Allocate_Memory

if Allocation = free

compare allocation

size with request

too small same size too big

do nothing
allocation.owner

= request.owner

found = true

if allocation table full

allocation.owner

= request.owner

found = true

YesNo

Split allocation

Add new entry

base = old_base + size

size = old_size - size

Amend old entry

size = size

error =

wait(Malloc) signal(Malloc)Search Malloc Table if found = false

failed_allocation

BEng/BSc Final Year Project Report
‡‘Œ52_<

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 20/09/96
Designer: P.Antoine x-refs: Main system

Function name: Send_Message
Description:

This procedure will add a message to the task specified's message queue. it will error if the task does
not exist, the message queue is full, or the message fills up the targets message space.

Parameters:

word: destination task number
word: message size
fword: sel:offset of message

Returns:

error_code

Functional Decomposition:

Send_Message

signal(task_list)wait(task_list)

if task <> vaild

error =

task_does_not_exist

find index entry

inc index head

if index head >=

index size then = 1

if index_head =

index_tail then

error =

index_full

if message_head +

message_size

message_space

< message_tail

mod

copy message to

message space

check target task.state = "inuse" add message task.state = "free"

BEng/BSc Final Year Project Report
‡‘Œ52`=

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 21/09/96
Designer: P.Antoine x-refs: Main system

Function name: Read_Message
Description:

The function will read a message from the requesting task own queue, and place it in the message
buffer for the task. After each message has been read, the index pointer is removed by incrementing
it, and modding it with the index size. Also the message buffer is also updated, by adding the message
size to the start point and modding it with the size. If the message queue is empty then an error is
generated.

Parameters:

fword: sel:offset of message buffer

Returns:

error_code

BEng/BSc Final Year Project Report
‡‘Œ52+X

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 21/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: Open_Object
Description:

This function will create a connection to an object on the system. If the object is allready loaded then
this function will just make a connection for the calling task. If the the object is not allready loaded
then this function will then load the object, then make the connection for the task.

Parameters:

realm_name fword pointer to the realm name
object_name fword pointer the name of the object

Returns:

word loaded object entry number
error_code

BEng/BSc Final Year Project Report
‡‘Œ52+Y

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CbaOFdcAefN�gRefVRh H�efV�gRhiB�JQC

Program: COBOS Date: 26/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: Open_Object

Program Fragment:

found = 0
wait(Object_table)
for y = all entries on object table until found
do

wait(MDSIO_table)
x := object_table[y].MDSIO_entry_number
if (MDSIO[x].realm = request.realm and MDSIO[x].name = request.name)
then

if (MDSIO[x].permissions.world = rw) or
 (MDSIO[x].realm = task.realm) or
 (MDSIO[x].group = rw and MDSIO[x].group = task.group)
then

for a = 0 to size of Loaded_object
do

if loaded_object[a].object_number = 0
then

loaded_object[a].object_number = y
loaded_object[a].app_number = task.app_num
loaded_object[a].instance_number = 0
b := malloc(instance_size)
if b not null
then

loaded_object[a].instance_space = b
loaded_object[a].object_number = y
foundz = a

else
error = "no memory"

fi
fi

done
if foundz = 0
then

error = "loaded_object table full"
else

object_table[y].connections++
fi
found = x;

fi
fi
signal(MDSIO_Table)

done

if (found = 0)
then

z = open_MDSIO_object(request.realm,request.name,r,service)
v = open_MDSIO_object(request.realm,request.name,rw,object)
if z.state or v.state = failed
then

error = "failed to open MDSIO object");

BEng/BSc Final Year Project Report
‡‘Œ5•+[

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

else
*** find space in object table ***
for j = 0 to object_table_size until found
do

if object_table[j].connections = 0
then

*** space found allocate memory for object ***
found = 1

c = malloc(block_size)
if c = null
then

exit(error memory full)
fi
object_table[j].buffer = c
read_MDSIO_block(z, 1, c)
d := malloc(object_header.code_start - 7)
e := malloc(object_header.code_size)

*** make sure allocations worked ***
if (d or e = null)
then

free(c, d, e)
exit(error "memory full")

fi

*** load the service code - simple file copy ***
copy from file code_start to e

*** load the parameter descriptions ***
current_location = services * 3
for i = 1 to object_header.services
do

move service param record to current_location
d:[i*3] := current_location
current_location += service_param_record_size

done

*** create the loaded_object record ***
for a = 0 to size of Loaded_object
do
if loaded_object[a].object_number = 0
then

loaded_object[a].app_number = task.app_num
loaded_object[a].instance_number = 0
b := malloc(instance_size)
if b not null
then

loaded_object[a].instance_space = b
loaded_object[a].object_number = j
foundz = a

fi
fi

*** check that the loaded object was created ok ***
if foundz <> 1
then

error = "memory full / loaded_table full"

BEng/BSc Final Year Project Report
‡‘Œ5•^�

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

free(c, b, d, e)
else

*** read object header ***
read_MDSIO_block(v,1,c)

*** init the object table entry ***
object_table[j].MDSIO_num = v
object_table[j].buffer = c
object_table[j].connections = 1
object_table[j].loaded_object = a
object_table[j].block_num = 1
object_table[j].service_code = e
object_table[j].service_desc = d
object_table[j].instance_size = intance_sz
object_table[j].last_instance = first word of c

fi
fi

done

*** if it did not enter the section above this will be zero ***
if foundz <> 1
then

error = "object table full"
fi
*** close the code file ***
close_MDSIO_object(z)

fi
fi
signal(Object_Table)
return foundz

Data structures:

The single letter variables (c,d,e) used above will be allocation pointers (32bit word:word), that will
hold memory references in a segment:entry number format.

BEng/BSc Final Year Project Report
‡‘Œ5•+2

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 26/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: Close_Object
Description:

This function will remove a connection to an object, and remove the loaded-object table entry. Alos if
the number of connections reach zero for the particular object, the the object will be closed, and
underlaying MDSIO object will also be closed.

Parameters:

word loaded object entry number

Returns:

error_code

Functional Decomposition:

Close_Object

close the object

close_MDSIO_Object

(MDSIO_num)

free:

service_code, buffer

service_desc

wait(Object_table)
if current_task =

Loaded_object[num].owner
signal(Object_table)

free(

instance_space) object_table[object_num].

connections

decrement

connections = 0

if object_table[object_num].

yes

yes

error =

"not_owner"
remove connection

no

BEng/BSc Final Year Project Report
‡‘Œ5•‘•

BEng (Hons) SWERTS 1996 / 97

‡3ˆ\‰oŠ‹‰VŒ�•&Ž;•‘•�’5“v”

?A@�B�B�CEDGF�H�I�J�K�CML�N�JO?APQBRKRLTS�LUK�V�CMLWNRJ

Program: COBOS Date: 26/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: Find_Instance
Description:

This function will load an instance into the local instance space. It will depending on the type field
find an absolute instance (which is an instance accessed by a direct request), or the next, first, or last
instance of the object. If the object cant be found then the function will reutn an error code.

Parameters:

word loaded object entry number
byte type - 00 - absolute, 01 - next, 02 - first, 03 - last
dword (for "absolute" find) the instance number

Returns:

error_code

Functional Decomposition:

Find Instance

no

error =

"not owner error"

Yes

error =

"no instance of object"
type?

first
last next

if loaded_object[num].app_number

= current_task
if first_instance = 0

Yes

absolute

instance.next

block_num =block_num =

object.first_instance

block_num =

object.last_instance

block_num =

instance_request

if block_num <> 0

check object table

wait(Object_table) for all loaded_object signal(Object_table)
*

if(loaded_object

= object_num) &

(instance_num =

request_num)

then

error =

"instance in use"

if no error

read_MDSIO_object(

block_num)

copy instance to

instance space

Notes:

first. all other instances of the same object should be checked to see if the instance is loaded
elsewahere!!!

After all MDSIO reads the error code will be checked to see if the block is off the end of the file.

BEng/BSc Final Year Project Report
‡‘Œ5•+:

BEng (Hons) SWERTS 1996 / 97

jAk�l�l�mEnGo�p�q�r�s�mMt�u�rOjAvQlRsRtTw�tUs�x�mMtWuRr

Program: COBOS Date: 26/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: New_Instance
Description:

This function will add a new instance of an opened object.It will add the instance to the end of the
MDSIO object. It will if nessasary extend the MDSIO object.

Parameters:

word loaded object entry number

Returns:

error_code

Functional Decomposition:

read_MDSIO_block(

last_block)

If last_instance.offset

+ size < block_size

last_instance.next =

offset + size

object_table.last_instance

= last_instance.next

write_MDSIO_block(

last_block)

In the same block Extend the instance

yes

extend_MDSIO_object
last.instance.next =

new_block:0000

write_MDSIO_block(

last_block)

extend instance first instance

extend_MDSIO_object
object_table.last_instance

= new_block:0000

object_table.first_instance

= new_block:0000

no

no

yes

wait(object_table) if last_block = 0 signal(object_table)

New_Instance

BEng/BSc Final Year Project Report y BEng (Hons) SWERTS 1996 / 97

jAk�l�l�mEnGo�p�q�r�s�mMt�u�rOjAvQlRsRtTw�tUs�x�mMtWuRr

Program: COBOS Date: 29/09/96
Designer: P.Antoine x-refs: MDSIO System

Function name: Delete_Instance
Description:

This procedure will remove an instance of an object from an object, and will add the removed object
to the front of the free space chain. It will also contract the MDSIO object, if the block becomes
empty. It will not delete the object if the object becomes empty.

Parameters:

dword instance number
word loaded object entry number

Returns:

error_code

Functional Decomposition:

Delete_Instance

wait(object) wait(object_table) remove from chain signal(object_table) wait(object)

amend forward block

read_MDSIO_block(

forward.pointer.block)

instance.back =

back.pointer

write_MDSIO_block(

forward.pointer.block)

amend back block

read_MDSIO_block(

instance.block)

if forward.pointer

<> Null

write_MDSIO_block(

instance.block)

if back.pointer

<> Null

read_MDSIO_block(

back.pointer.block)

instance.forward =

forward.pointer

write_MDSIO_block(

back.pointer.block)

update last pointer

read_MDSIO_block(

object_header)

set instance to be

a freespace pointer

write_MDSIO_block(

object_header)

BEng/BSc Final Year Project Report z BEng (Hons) SWERTS 1996 / 97

jAk�l�l�mEnGo�p�q�r�s�mMt�u�rOjAvQlRsRtTw�tUs�x�mMtWuRr

Program: COBOS Date: 01/10/96
Designer: P.Antoine x-refs: Check_Mouse

Function name: Draw_Mouse
Description:

This procedure will copy the background from under the mouse, then copy the mouse graphic to the
space where the mouse is. This procedure uses the same technique as does draw_box. The screen
position for this function will be worked out as follows:

xor edi ,edi
mov di, fs:[mouse_x]
shr edi ,3 ; divide by eight

xor eax, eax
mov ax, fs:[mouse_y]
shl eax, 4 ; multiply by 16
add edi, eax
shl eax, 2 ; multiply by 4 (16*4 = 64)
add edi, eax ; now points to the screen byte

Parameters:

<none>

Returns:

<none>

BEng/BSc Final Year Project Report { BEng (Hons) SWERTS 1996 / 97

jAk�l�l�mEnGo�p�q�r�s�mMt�u�rOjAvQlRsRtTw�tUs�x�mMtWuRr

Program: COBOS Date: 01/10/96
Designer: P.Antoine x-refs: Check_Mouse

Function name: Clear_Mouse
Description:

This function is basically the same as clear_box, exceptb the area is smaller. The position on screen is
found in the same way as draw_mouse.

Parameters:

<none>

Returns:

<none>

BEng/BSc Final Year Project Report | BEng (Hons) SWERTS 1996 / 97

jAk�l�l�mEnGo�p�q�r�s�mMt�u�rOjAvQlRsRtTw�tUs�x�mMtWuRr

Program: COBOS Date: 01/10/96
Designer: P.Antoine x-refs: Handle_Exception

Function name: Display
Description:

This function will display in the area that has been grayed by the draw_box function, the text
message that is in the zero ended data buffer. The function will display the text at the text location
releative to the start of the gray area, and in the colour that is passed to it. This functiin will only
display the following charaters, and they are numbered from 1, and are not ascii:

A-Z, a-z, #, $, <, >, " , :, 0-9

so, A is 1, Z is 26, a is 27, etc...

Parameters:

byte colour standard VGA 16 colours
byte x_position
byte y_position
fword pointer to a data area with the message in it.

Returns:

<none>

BEng/BSc Final Year Project Report } BEng (Hons) SWERTS 1996 / 97

jAk�l�l�mb~Ood•A€fu�•R€fxR‚ p�€fx�•R‚il�rQm

Program: COBOS Date: 01/10/96
Designer: P.Antoine x-refs: Main system

Function name: Display
Program fragment:

cmp #x_param, 26h ; screen x size 38 charaters
ja size_error
cmp #y_param, 12h ; screen y size 18 lines high
jb all_ok

size_error: mov eax, #size_error_code
jmp exit

all_ok: xor eax, eax
mov al, #y_param
imul al, 0320h ; what line to start on
add ax, #x_param ; proper start position
lds esi, #data_buffer ; get the data buffer
les edi, #charater_data ; where the charcter set is stored
mov dx, 3c4h ; sequencer control register
mov ax, 0f02h ; set to all planes
out dx, ax
mov dx, 3CEh ; control port (VGA/EGA)
mov ax, 0305h ; read mode 0 write mode 3
out dx, ax
mov ax, 0003h ; set to data replace
out dx, ax
mov ah, #colour ; set/reset to the colour
mov al, 00h
out dx, ax

draw_loop: xor ebx, ebx
mov bx, ds:[esi] ; get the charater
cmp bx, 00h
je exit ; if the caracter is zero then exit
mov dl, es:[edi*8] ; first byte of the charcter
mov gs:[eax], dl ; store it on the screen
mov dl, es:1[edi*8] ; second byte
mov gs:80[eax], dl ; store it one line down
mov dl, es:2[edi*8]
mov gs:160[eax], dl
mov dl, es:3[edi*8]
mov gs:240[eax], dl
mov dl, es:4[edi*8]
mov gs:320[eax], dl
mov dl, es:5[edi*8]
mov gs:400[eax], dl
mov dl, es:6[edi*8]
mov gs:480[eax], dl
mov dl, es:7[edi*8]
mov gs:560[eax], dl
inc eax
inc #x_param
cmp #x_param, 26h ; if x = 26 then end of screen
jae exit
jmp draw_loop

exit: ret

BEng/BSc Final Year Project Report ƒ+„ BEng (Hons) SWERTS 1996 / 97

…‡†E†‰ˆ‹Š•Œ•Ž0• ‘•’”“–•˜—š™E› œ•ˆ•ž�Ž�ŠŸŽ0 AŽ0¡ŸŠ

¢�£¥¤¦£
§©¨ª¤]«>¬

®°¯>¤¦±
§\¬
²E³^´µ£
¶¥´µ±¥·�·�¸T¹_¶‹º»±`¹¦¶¥¼¦±¥¼_¶%½

The system has two different types of executables, the application, and the service.

The application is free standing and can be run by a user directly from the system manager. The
application can call the system functions, plus is able to open/close ordinary application files. It will
be able to create local variables. The base language for both the applications and the services is the
same, except that the application can call functions that are external.

The service is part of an object, that only part of an object that can be seen by the outside world is the
services. The services cannot call any application or service that is outside the object that it belongs
to. They may hold the instance of other objects as part of its data space. The service may also use
local variables, which are not stored as the permanent data parts of the object is.

A service is called by:

realm:object_name[instance].service_name(parameter_list)

where:
realm is a data space, much like a user in UNIX, but it is flat, there is no directory

structure. It can contain applications, objects, and flat files. the realm is optional,
and if left out, the call will default the current realm.

object_name is the name of the object that the service is to be found in.

instance is the particular instance of the object that is being called. The instance is a
particular variable type that will only hold the address of the data relative to the
object instance.

service_name the name of the particular service that is being called.

The language structure is a very simple one, two loop structures for and while, one condition
structure if .. elsif .. else, and a basic set of mathematical operators, *, +, -, / (division). With a
simple assignment operator. This a very basic language set, an as this language is for a 3rd year
project, and is only to demonstrate that way the object system works.

ie. while (condition is true)
{

statements;
};

¾�¿ÁÀ•À

£¥´°·Â±
®Ã¼¦§�¬
²

{ } = multiples
() = optional fields
 | = selection between fields
, = separates the fields
' ' = means the specified characters are expected

À_Ä

¢�¨A³Åº
½ÇÆÈ¬_É°¸>¹
¸5®Ê¸5£`¹

¾�¿ÁÀÌË

¸�§�®Ê¸T¹_¶

language := application | object
application := '@COPLE:application!', identifer, app_body
object := '@COPLE:object!', identifer, {declaration}, {service}
app_body := { statement | external_call | system_call }

service := service_header , '{' , service_body, '};'
service_header := (type), identifer, ' (', (parameter_list) , ')'
parameter_list := parameter , (',' , parameter)
parameter := type, identifer, ('=', [constant | identifier]) * constant = default
value *
service_body := { statement | service_call }

compound_statement := '{' , {statement} , ' };'
statement := declaration | compond_statement | expression_statement | for_statement |

 | forall_statement | while_statement | if_statement

declaration := [struct_definition | array_definition | standard_def], (' = ', constant), ' ; '
 | instance_def, ';'

struct_definition:= 'struct' , identifer, '{', {declaration}, '}'
array_defintion := type, identifer, '[', integer_const , ({, integer_const}), ']'
standard_def := type, identifer
instance_def := ' instance' , identifer, (' [' , integer_constant , '] '), ' of ' , object_id

expression_statement := identifer, ' := ', expression , ' ; '
for_statement := ' for ' , ' (' , expression, expression, expression, ') ' , statement
forall_statement:= ' forall ', ' (' , indentifer, ' of ' , object_id , (' with ' , parameter_list), ') ',
statement
while_statement:= ' while', ' (' , expression , ') ', statement
if_statement := ' if ', expression , statement, ({ 'elseif ' , expression , statement }) ,

 (' else ' statement)

expression := ' (' , expression , ') ' | [constant | logical | arithmatic | identifer]
logical := ([identifer | constant]) , logical_operator , [identifer | constant | logical]
logical_operator:= 'lt' | '<' | 'le' | '<=' | 'gt' | '>' | 'ge' | '>=' | 'eq' | ' = ' | 'ne' | '<>'
arithmatic := ([identifer | constant]) , aritmatic_operator, [identifer | constant | arithmatic]
arithmatic_op := ' * ' | ' + ' | ' - ' | ' / '
type := (address_typer), 'int' | 'real' | 'boolean' | 'char' | 'instance' | struct_array_id
address_typer := ' $ '
struct_array_id := indentifer

constant := integer_constant | real_constant | boolean_constant | char_constant |
 array_constant | struct_constant

integer_constant:= (' - ') { digit }
real_constant := (' - ') {digit } , ' . ' , { digit }
boolean_constant:= ' true ' | ' false '
char_constant := ' , charater, ' | escape_sequence
array_constant := ' " ', {char_constant} , ' " ' | ' [' , constant , ({' , ' , constant}) , '] '
struct_constant := ' { ' , constant , ({ ' , ' , constant }) , ' } '

system_call := system_function | [' new ' | ' delete '] object_id
external_call := object_id , ' . ' , service_call
service_call := identifier , ' (' , parameter_list, ') '
object_id := (identifer, ' : ') , identifer , (' [' , identifer , '] ')
identifer := ('$') , {[a-z] | [A-Z] | ' _ ' | [0-9]} * max length 32 items*

BEng/BSc Final Year Project Report
À

¯�Í

BEng (Hons) SWERTS 1996 / 97

À_Ä

¢�¨A³Åº
½ÇÆÈ¬_É°¸>¹
¸5®Ê¸5£`¹

system_function:= * to be defined *
escape_sequence:= * to be defined *
charater := * ascii value 0 - 255 *
digit := 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

BEng/BSc Final Year Project Report
À

¯�Î

BEng (Hons) SWERTS 1996 / 97

